CS356: Operating System Project
Report for Project 2

Android Memory Management
Name: Ziteng Yang

This report contains how | implemented required program and functions, and the result of running and
testing. | also add some note when studying the Linux source code here, regarding it as part of “detail”, and

if its not required, please just skip it.

1. Problem 1: Compile the Kernel
This problem has nothing to with technological knowledge, since | just need to follow the instruction
step by step to configure environment, and enter “make -j4" at the terminal in kernel file's location. In
fact, this is just a preparation for the following 3 problem.
2. Problem 2: Map a Target Process’s Page Table
2.1. Description
In the Linux kernel, the page table is broken into multiple levels. Address of a system with a 4-

level page table is as follows:

PGD_SHIFT PMD_SHIFT PAGE_SHIFT

pgd pud pmd pte offset

The system of my 32-bit android virtual devices has a 2-level page table, which means

pud=pmd=0 (found in implementation):

PMD_SHIFT PAGE_SHIFT

poad pte offset
PGD_SHIFT

So the page table just has the following structure:

page of
page table

inner page table
memory

Out goal is to map this structure from kernel space into user space with our own system call. In
another word, given a pid of some process A and some virtual address, | need to use my own
process “VATranslate” to translate the virtual address into physical address. To complete the
mission, | need to use my system call to build my own outer page table and inner page table in
my process of user space, while accessing the inner table just gives us the physical address of
target process.

Related files: syscall.c(wrote by my self), VATranslate.c(wrote by myself), pagewalk.c (kernel file

changed a little), mm,h (kernel file changed a little)
2.2. Implementing Details
2.2.1. In general
Since | need to translate the virtual address right, | cannot just apply for a large number
of memory and copy the table from kernel space to user space, but need to access the

inner page table (pte) directly in read-only mode, like the following figure:

pgd_index
not continuous
pte_i \ndex
Outer Page Table
(Kernel Space) P
fake_pgd pte_index| .
pgd_index
continuous
Fake Inner Page Table
“addr (Kernel Space)
- pte_index

Fake Outer Page Table * build by remap_pfn_range()
(User Space)

Memory

Fake Inner Page Table build by mmap()
(user Space)

The relation built by remap_pfn_range will be discussed later.
2.2.2. Implementation of user program: VATranslate.c

The parameter reading is very easy:

main(argc, **argv)

printf

printf(\Tra

if(argc!=3)

{
printf("a ent unmathed
return -1;

pid=atoi(argv[1]);
begin vaddr=strtoul(argv[2],

Firtly we need to investigate the page table layout as required, so | invoke a system call
“get_pagetable_layout” (implemented in syscall.c), and just pass the struct to it and get

the answer:

layout_info{
_shift;
pmd_shift;
page shift;

if(!syscall(3 ayout_info (pagetable_layout_info)))
{

printf("p
layout

Now | can build my fake page table. Firtly | need to allocate memory to fake outer

pagetable. Since this need a smaller scale of array, | can just use malloc:

=malloc(

Next is to allocate memory for fake inner page table, as the instruction says, “it's a bad
idea to use malloc to prepare a memory section for mapping page tables, because
malloc cannot allocate memory more than MMAP_THRESHOLD (128kb in default).

Instead you should consider to use the mmap system call”:

page_table_addr=mmap (c
1<<22,

PROT READ | PROT WRITE,
MAP SHARED | MAP_ ANONYMOUS,

printf(
return -1;

This system call builds a large memory area, but its virtual memory. Use the function
remap_pfn_rang() in system call “expose_page_table” can build a mapping relation of

fake inner page table and the “real” inner page table:

call(357,pid, fake pgd,0,page table addr,begin vaddr,begin vaddr+l)

tch (err)

dary error!\n");

find pid!\n");

As we only translate one address, we only need a small interval between begin address
and end address, so assigned end_addr=begin_addr+1;

After the system call, if it works (assume it does), we should be able to visit the real inner
page table (PTE entry) through fake_pgd;

So we need to calculate pgd_index and pte_index at first:

va,info
va,info ift -1
ine page offset(va,info

ut_info.page_)
<<(layout info.pmd shift-layout info.page shift);
1<<(32 out_inf ir shift);

pgd index=pgd index(begin vaddr,layout info);
pte index=pte index(begin vaddr,layout info);
page offset = begin vaddr & OxQfff;

2.2.3.

This calculation formula is according to the following structure:

pmd_shift
pgd_shift
A
| |
page_shift
L N
pgd pte offset
pgd_index pte_index page_offset

Finally we can access the page table and translate the virtual address:

frame=p[pte index];

frame &= ~(pag
if(!frame)
{

printf("t

printf("
printf

Before returning we need to free the memory allocated, otherwise it would cause
memory leak.

Implementation of system call: syscall.c

This file in fact implemented two system call: get_pagetable_layout() and
expose_page_table().

The first system call is for investigating the page table layout. It just pass the 3 desired

parameter from kernel to user but nothing else:

get_pagetable_layout(pagetable layout_info _ | pgtbl_info,

size)

printk
printk

printk(
return -

pagetable layout_info tmp;
tmp.pg =PGDIR SHIFT;
tmp.pmd i ft=PMD_SHIFT;
tmp.page_shift=PAGE SHIFT;

if(copy_to_user(pgtbl_info,&tmp, pagetable layout info)))

The second system call is the core and most difficult part. | need to build the mapping
relationship here. It receive parameters including pid, begin and end address, the address

of fake outer page table and fake inner page table.

Firstly, we need to find the task_struct type of target process, according to pid, using

some existing function:

pid* current pid=find get pid(pid);
if('current_pid)
{

printk("failed to find pid!\n");
return 2;

task_struct *current_t get pid task(current pid,PIDTYPE PID);
if(!current_task)
{
printk(r findinc
return 2
}
printk(KERN_INFO" pid:

Then we need to apply for a memory of kernel space to store the outer page table, since

we already assume the outer page table won't change for simplicity.

myPrivate

) ,GFP_KERNEL) ;

my private.pte base=page table addr

Later it would be copied to user.

The newly defined struct myPrivate was used to be carried into the calling of
walk_page_range function. This function we defined in mm/pagewalk.c . It can recursively
walk the page table for the memory area in a VMA, calling supplied callbacks. Callbacks
are called in-order (first PGD, first PUD, first PMD, first PTE, second PTE... second PMD,
etc.). If lower-level callbacks are omitted, walking depth is reduced. If any callback
returns a non-zero value, the walk is aborted and the return value is propagated back to
the caller. Otherwise 0 is returned. walk->mm->mmap_sem must be held for at least
read if walk->hugetlb_entry is not NULL.

pagewalkc %

walk _page_range(addr,
mm_walk *walk)

It has several function pointer, which woud be called every time the walk_page_range()
enter a pgd entry (calling walk->pgd()), a pud entry (calling walk->pud()), -

Since our purpose is to remap pte table to user space, and the system has a 2-level
page table, we need to accomplish the procedure every time we get into pgd_entry, and
remap the responding pte table touser program.

This structure also contains a point to the self-defined struct, so that we can carry some
useful variable to finish the walk.

Before walking the page, we need to initialize the mm_walk variable walk:

my private.pte base=page table addr;

walk.pgd entry=&

<.pte_hole= 3
1b_entry=|

urrent task->mm;
ny private;

As we won't need other function, only carry one so that it can finish the remap

procedure. The function was defined as following:

my_pgd_entry 1 t *pagd, addr, nex mm_walk *walk)
pgd_index=pgd_index(addr);

pfn = page to pfn(pmd page(()*pgd)) ;
if(pgd_none(*pgd) | |pgd_bad(*pgd) || !pfn_valid(pfn))

1

I
printk (KERN_INFO"pf \n",pfn);

myPrivate *base=walk->private;

vm_area_struct* vma = find_vma(current->mm, base->pte base);
if(!'vma)

down_write
er

PTE_SIZE*
vma->vm_page_|
up_write(¤t->mm->mmap_sem) ;

ex] = base->pte base;

In this function, we find current process’s virtual memory area’s vm_area_struct variable,
and target page table's page frame number (PTE) and use the function
remap_pfn_range() to remap the PTE to user space, each time an area of
PTE_SIZE+sizeof(unsigned long) .

Since this function was called each time walk_page_range enter a pgd, the whole page

table of target interval was remapped into user space.

Note: To successfully use function walk_page_range(), we need to add two sentences at

mm/pagewalk.c , and set it as external at linux/mm.h:

pagewalk.c x

pagewalkc X

walk_page_range(addr,
mm walk *walk)

=

o

EXPORT_SYMBOL (walk_page_range) ;

(Thanks for the discussion in our course's Wechat group between Ruizhen Chen and

Jinwei Xi.)

2.3. Result

Following was some screen captures of running program VATranslate:

Test the “init” process (pid

1):

emulator /home/youngzt

File Edit View search Terminal Help
P G) kl\llng Ry TN T (e ey

init:
init:
init:
init
init
nit:
health
module get |

service '

: battery 1=50 v=
agetable_

module expose page

module exit!

start loading system c

end load

system cal

start loading system cal
end loading systen cal

module load!

start get_pagetable la
struct size unmathed!

Start get_pagetable_layout()
end get_pagetable_layout()

Start ex
ptd: 1 name: int

Virtual memory area
Virtual menory area

agetabel 1aynu(
t_pagetabel_layou
expose_page_tab’

expose_ ab

gener
rootgeneric: /dati/m\:(

data/misc
:/data/misc
/data/misc

root@gener-ic: /data/misc
root@generic: /data/mis

ut()

root@generic: /data/misc

root@generic: /data/misc
root@generic: /data/misc

eneric:/data/misc
root@generic: /data/misc

root@generic: /data/misc
root@generic: /data/misc

< page table()

VATransla

pgdir_:
virtual

rooteg

FVcTgented { module_request } for pi
:rinetd:se tcontext=u:r:kernel

Test the “kthreadd” process (pid =2).

] o e FI0) Sy e

type-1400 audit(1560614294.431:629)
{peables” kmod “ipt_TCPMSS" scontex

ermissiv
health
typ
netd kmad
rmissive
pe=
capabilit:

init: Service

Service
Sservice
service

ba(tery B
400 audit(1560614305.551:630): avc:
netdev-dunnyo”

1=50

400 aud\t(1400014305 511 631): avc: dented { sys_module } for pi
6 scontext:

'zygote’

'zygote'
Una

Una
"media’
'netd’

‘netd’
‘netd’
‘media’
‘media’
Starting service
Starting service

199 con
system p

avc: dented
:rinetd:

{ module_

equest } for pi
tcontext=u:

:kernel:se tclas:

v=0 t=0.0 h. ch
denied { module_request } for pid=7986 comm

scontext=u:r:netd:so tcontex :kernel:so tclass=systen pe
986 comm="netd

se tcontext: etd:so tclass=capability permissive=

(pid 7988) killed by signal 9

(pid 7988) killing any children in process gr

(5IE 1 Gt A e (e e (19 s (e o ¢

ble to write to
s being killed
is being killed.
(pid 7986) killed by signal 9
(pid 7986) killing any children in process
(pid 7987) killed by signal 9
(pid 7987) killing any children in proce:
"netd"...
‘media’.

'/sys/power /state': Invalid argument

group

group

shift:

21 pnd_
address:

rootmgsner\c
root@generic:
root@generic
root@generic

root@generic:

root@genertic:
rootageneric

VATranslate

pgdir_shift:

Virtual address:

root@generic:

pgdir shift:

:/data/misc

rmod syscall.ko
syscall.ko
~/VATranslate 1 6xacd4a66e

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
in
#

page.

_shift: 12
Physical address: 6x0800f600

sesymeee
data/misc
/data/m1~(
data/misc
data/misc
/data/misc
data/misc
data/misc
data/misc
data/misc

B3 3w o o R o R o o

data/misc
data/misc
/data/misc
data/misc

romod syscall.ko
insnod syscall.ko
./VATranslate 1 0xacd4a0ee

21 pmd_shift: 21

. 2 age_shift: 12
0xacd4aee0

p
Physical address:

oxac

a/misc # ./VATranslate 2

21 pnd shift: 21 page_shift: 12

starting service 'zygote'
start get_pagetable_layout() system call,
struct size unmathed!

Start get_pagetable_layout() system call
end get_pagetable_layout() system call...

start expose_page_table() system call...
pid: 2 name
Virtual memory area:

target process has no vm area

target process has no vm area!
STroot@generic:/data/misc # [

Note: we can see from ps command that it and all child process of it has no virtual memory area,

therefore our system call must check this, otherwise “kernel panic”

a empty pointer:

5|root@generic:
SER PID

/data/misc #

PPID

)

)
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
1
1
2
1
1

VSIZE
2208
T

WCHAN
sys_epoll_

kthreadd
run_ksofti
rescuer_th
bdi

PC
0006db7c S
00000000
0000
00000000
00000000
00000000
00000000 S
00000000
0000
00000000
00000000
0000
00000000
00000000
0000
00000000
00000000
00000000
00000000
0006530C
00000000
00000000
00000000
00000000
00000000
00000000
00000000
ac23ae18
be1ebsed
00000000
00032b14
b6571478

NAME
/init
kthreadd
oftirqd/e
khelper
sync_supers
bdi-default
kblockd
rpciod
kswapdo
fsnotify_mark
crypto
kworker /u:
mtdblocke
mtdblock1
mtdblock2
binder
deferwq
kworker /u:
mncqd/o
/sbin/ueventd

bdi_forker
rescuer_th
rescuer_th
kswapd
Fsnotify_m
rescuer_th
worker_thr
mtd_blktra
mtd_blktra
mtd_blktra
rescuer_th
rescuer_th
worker_thr
mnc_queue_
poll_sched
kjournaldz
rescuer_th
bdi_writeb
journald2
rescuer_th
kjournaldz
rescuer_th
sys_rt_sig
hrtiner_na
kauditd_th
sys_epoll_
sys_epoll_

%

flush-31:1

©0000020000000000000000®

sfeecccogipeecccccoccocccccn
°

kauditd
/sbin/healthd

might occur if it tries to access

jbd2/mtdblocke-
ext4-dio-unwrit

jbd2/mtdblock1-
ext4-dio-unwrit
jbd2/mtdblock2-
ext4-dio-unwrit
/systen/bin/logd
/systen/bin/vold

/systen/bin/lnkd

Test “sh” process (pid=190 when tested):

memory area: keystore 86 5428 1916 binder_thr b2a
rtusl menory area: en 89 5240
140000 - 0xacb40000
cb7de0e -
exacbs1000 -
o 6

worker_thr 00000600
1616 poll_sched a74ad2fc
2684 © afd
0 a
© ab3 2
02 o worker_thr 00000000 5 kworker/6:0
data/misc # ./VATranslate 2 oxac

pgdir_shif
get pro

: 00
- exaccdfeee
- oxacceoeee
2cde0000
e - exacdoleee
21 prd_shirt: 21
OxFrf0000

- oxacd2s6ee
dadeee

- exacdafeee page_shift:

- oxacdseeee e ge_table: address boundary error!
ds1660 :/da T te 190 OXTFFFFFFT

11 Lask->um->umap
r(p = current_task->mm

printk("e:

3. Problem 3: Investigate Android Process Address Space
3.1. Description
This problem was almost the same as the VATranslate program, but we need to translate a range
of virtual address.
We also need to discover some details about zygote

3.2. Implementing Details

Most part of it was the same as VATranslate.c, the main difference was that we need a for-loop to

check and translate valid virtual address.

igned 1 i3
r(i=begin_vaddr end_vaddr>>layout_info.page_shift;++1i)
L «(i<<layout info.page shift,layout info)
_index(i<<layout_info.page_shift,layout_info)
p=fake_pgd[pgd_index];

ne=p[pte_index];
frame>>layout_info. par ift)

printf(%1 ,1,frame>>layout info.page shift);

3.3. Result

Following was a simple test of vm_inspector. The detail was discussed at 3.4.

nter root@generic: /data/i
o

oxacdac -

oxacdae -

3.4. Discovery

3.4.1.

3.4.2.

Dump page table twice while playing an app
| tried with “com.android.settings”. When | open it and dump its VMA again, | found in

the same interval, there is 3 more virtual page occurred:

5554:05P1]-517021910683
&

Settings > e 76 6 oxbroese0n

Data usage

0 Display A Sound ¬ification
s W Storage& USB

§ Batey T Y—

9 Localion B Secuiy

B Accauns @ Language & input
O Backupairesal

System

® Dbatetiime T Accossibilly

This implies that when running an app, its virtual memory area are always changing.
About Zygote and other Android app

One thing need to be notice is that, when load new system call, we need to choose
carefully which old system call to be replaced. Initially | choose 356 and 357 just like
project 1, but when | came to problem 3, | found that zygote was killed again and again,
and the test is hard to continue. | spend a long time to discover that its initialization
need original system call 356 and 357, so | need to consider others. | also tried 233 and
666, and other mysterious things also happened- Finally someone told me 380 and 381

migth work, so | changed it and it didn’s go wrong.

We can easily search some material about the zygote process. It's child process of init.
All process named “com.*" was forked from it.

The following figures shows some relationship with zygote process and other process.
Note when doing this test this, pid of zygote didn't change and remain 84, so did its

child process.

255| root@generic: /data/misc # ./vn_inspector 976 0xb4299000 Oxba29000

vn_inspector

pgdir_shift: 21
pnd_shift: 21
page_shift: 12

page - frame
0xba299 - ©x3dd77
0xba29a - ©x286b2
axb429b - o
oxb429e - O

root@generic: /data/misc # ./vn_inspector 932 6xb4299000 0xb429F00
vm_inspector

pgdir_shift: 21
pnd_shift: 21
page_shift: 12

page - frame
0xb4299 - 0x3dd77
oxbaz9a - ©x29d35
oxbaz9b - ©x3eesb
oxbdzge - ©x3dd76
root@generic: /data/misc # ./vm_inspector 864 8xb4299000 0xba29FEE0

vm_inspector

padir_shift: 21
prd_shift: 21
page_shift: 12

page - frame
0xba299 - €x3dd77
0xba29a - @x3cef6
0xba29b - @x3eeSb
0xba29e - ©x3dd76

We can see that all process who's parent was zygote same to share the same page table,
i.e. using the same virtual address and physical address.
What about other app? We can see that in the following figure, only zygote and its child

process are mapped in this area above process tested.

data/misc # ./vm_inspector 82 @xb4299000 0xbd29f00

nspector 83 0xb4299600 exba29f0e0
vm_inspector

podir_shift:
prd_shift:
page_shift:

page - frame
./vn_inspector 84 6xba299000 6xba297600
vn_inspector
pgdir_shift: 21
pnd_shift: 21
page_shift: 12

page - frame
0xb4299 - x3dd77

e59
oxb429e - 0x3dd76
root@generic: /data/misc # ./vm_inspector 864 6xbd4299606 ©xb4297600
vm_inspector
pgdir_shift: 21
pnd_shift: 21
page_shift: 12

page - frame
6xba299 - 0x3dd77
exba29a - ox3cefe
6xba2ob - Ox3eesb
exbazge - 0x3dd76

We can also see from the following figure that zygote and /system/bin/keystore are

differently mapped in this area:

root@generic:/data/misc # ./vm_inspector 84 0xba299600 ©xbfe08008

vm_inspector

pgdir_shift: 21
pnd_sh 2
page_shift: 12

page - frame
6xbebed - 6x393dc
oxbebee - BX3b3f7
oxbebef - ©x3b352
oxbebfe 0x3c005
oxbebf1 0x2627d
oxbebf2 - 8x2643d

root@generic:/data/misc # ./vm_inspector 83 0xba299600 ©xbfe0@000

vm_inspector

pgdir_shift: 21
pnd_shift: 21
page_shift: 12

page - frame
oxbef12 - ©x3e78d
oxbef13 - 0x3e78e
oxbef14 0x3e78f
oxbef15 0x3f381
oxbef16 ox3f249

On the other hand, check the /proc/pid/maps file, | also get the result:

It again shows Zygote’s child process shares some memory area of it.
Check another process which is not Zygote's child, | can easily they use totally different

memory area of Zygote.

When | was reading <<Under Standing the Linux Kernal, Third Edition>>, | also learned
that there did exits lots of page frame that are shared by multiple process (at Chapter
17.2). It also suggests that “Anonymous pages are often shared among several
processes. The most common case occurs when forking a new process--all page frames
owned by the parent—including the anonymous pages—are assigned also to the child".

Results above also confirmed the conception.

4. Problem 4: Change Linux Page Replacement Algorithm

4.1. Description
In this problem, we need to change the page replacement algorithm of our android virtual
devices.
The original algorithm and the target algorithm was briefly introduced in our instruction: add a
new referenced variable to reflect the importance of a page. If a page is referenced by process, it
should be shifted 1 bit to the right and added by 2 which is defined by myself. Otherwise, the
referenced value shifts 1 bit to the right for every period. | should check these two lists
periodically, moving the pages whose reference value is greater than or equal to a threshold that
defined by yourself to active list, and move the pages whose referenced value is smaller than it to
inactive list.

But its too high overview. So first we need to find useful material to read and learn how the

original algorithm was implemented, so that we can modify it and change to new one. The most
important material was the Chapter 17.3. (Implementing the PFRA) of the book << Understanding
the Linux Kernel, Third Edition >> (ULK book)

. Knowledge Learning

All pages belonging to the User Mode address space of processes or to the page cache are
grouped into two lists called the active list and the inactive list; The former list tends to include the
pages that have been accessed recently, while the latter tends to include the pages that have not
been accessed for some time. Clearly, pages should be stolen from the inactive list.

The following messages was from 17.3.1. of ULK book:

ctive list and the inactive list of pages are the core data structures of the
Igorithm. The heads of these two doubly linked lists
List and inactive_list fields of
Jemory Zones” in Chapler 8). The
he same descriptor store the number

of pages in the two lists. Finally, the Lru_Lock field is a spin lock that
protects the two lists against concurrent accesses in SMP systems.

If a page belongs o an LRU list,its PG_Lru flag in the page descriptor is set
e belongs 1o the active list, the PG_active flag is set,

s to the inactive list, the PG_active flag is cleared. The lru
lescriptor stores the pointers to the next and previous

RU list

Morcover, if the

while if it
field of the
elements i

Several auxiliary functions are available to handle the LRU lists:

add_page_to_active_list()
Adds the page to the head of the zone's active list and increases the
nr_active field of the zone descriptar.

add_page_to_inactive_list()

Adds the page to the head of the zone's inactive list and increases the
nr_tnactive field of the zone descriptor
del_page_fron_active_list()
Removes the page from the zone's active list and decreases the
nr_active field of the zone descriptor.
del_page_fron_tnacttve_list()
Removes the page from the zone's inactive list and decreases the
nr_tnacttve field of the zone descriptor
del_page_fron_Lru()
Checks the PG_active fl
page from the active or in

nr_tnacttve field of the zon:
PG_active flag.

iptor, and clears, if necessary. the

activate_page()

c s in the inactive list), it

tnactive vokes
2dd_page_to_active_list(). and finally sets the PG_active flag. The
zone’s Lru_Lock spin lock is acquired before moving the page.

ru_cache_add()

If the page is not included in an LRU list it sets the PG_Lru flag, acquires
the zone's Lru_Lock spin lock. and invokes
add_page_to_tnactive_list() to insert the page in the zone's
inactive list

ru_cache_add_active()

If the page is not included in an LRU list, it sets the PG_Lru and
PG_active flags, acquires the zone's ru_lock spin lock. and invokes
add_page_to_active_list() toinsert the page in the zone's active list

The following figure captured from chapter 17.3.1. of ULK book, (PFRA=Page Frame Reclaim
Algorithm) shows a high level overview of how PFRA works (how functions are invoked) in Linux

operating system:

. LOW ON MEMORY RECLAIMING HIBERNATION RECLAIMING _ PERIODIC RECLAIMING
Low memory on Low memory on \ | Suspend to disk :
bufferallocation page allocation (hibemation) reap_work

fsway
__getblk() kernel thead [f | work queve

alloc_page_buffers() _alloc_pages() pi_suspend_disk()

‘ kswapd() | |cache_reap()
o Jh]
balance_pgdat()l

shrink_slab()

try_to_free_pages()

|slab_destroy()
|shrink_:aches()]

| out_of_memory() shrink_zone()
shrink_cache(

shrink_list()

Ipage_xeferem: ed() I Ipagcout ()I

)

refill_inactive_zone(

Figure 17-3. The main functions of the PFRA

We can see from the figure how those function are invoked.

The next figure which is also from 17.3.1. of that book shows how a page frame’s state are changed

through pre-defined functions.

PG_active ==
PG_referenced ==

PG_active ==
PG_referenced ==

¥

PG_active==0 PG_active==1
PG_referenced ==1 T PG_referenced==1

—p Ir1y_cache_odd()

——3 Iru_cache_add_active()

~ ~ = = mark_page_accessed()

1 » page._referenced()
\ # = w3 (Efill_inactive_zone()

Figure 17-4. Moving pages across the LRU lists

These should be the core function we need to understand, though its purpose seems easy for us.

The book explains some detail about mark_page_access():

The mark_page_accessed() function
Whenever the kernel must mark a page as accessed, it invokes the
mark_page_accessed() function. This happens every time the kernel

" < that a paoe is o refer 2 Us s, a
filesystem layer, or a device driver. For instance, mark_page_accessed()
is invoked in the following cases:

= When loading on demand an anonymous page of a process (performed by
the do_anonymous_page() function; see the section "Demand Paging" in
Chapter 9).

‘When loading on demand a page of a memory mapped file (performed by
the filemap_nopage() function: see the section "Demand Paging for
Memory Mapping" in Chapter 16).

‘When loading on demand a page of an IPC shared memory region
(performed by the shmem_nopage() function; see the section "IPC
Shared Memory" in Chapter 19).

When reading a page of data from a file (performed by the
do_generic_file_read() function; see the section "Reading from a
File" in Chapter 16).

= When swapping in a page (performed by the do_swap_page() function;
see the section "Swapping in Pages" later in this chapter).

= When looking up a buffer page in the page cache (see the _
_find_get_block() function in the section "Searching Blocks in the
Page Cache" in Chapter 15).

The mark_page_accessed() function executes the following code
fragment:
if (!PageActive(page) && PageReferenced(page) && PagelRU(page)) {
activate_page(page);
ClearPageReferenced(page);
} else if (!PageReferenced(page))
SetPageReferenced(page);

As shown in Figure 17-4, the function moves the page from the inactive list
to the active list only if the PG_referenced flag is set before the invocation.

We can see from above how the state of a page are changed to be "more active” through the

function. Following is what’s necessary to know about the page_referenced() function:

The page_referenced() function

The page_referenced() function, which is invoked once for every page
scanned by the PFRA, returns 1 if either the PG_referenced flag or some of
the Accessed bits in the Page Table entries was set; it returns 0 otherwise.
This function first checks the PG_referenced flag of the page descriptor; if
the flag is set, it clears it. Next, it makes use of the object-based reverse
mapping mechanism to check and clear the Accessed bits in all User Mode
Page Table entries that refer to the page frame. To do this, the function makes
use of three ancillary functions; page_referenced_anon(),

page_referenced_file(). and page_referenced_one(), which are

analogous to the try_to_unmap_xxx() functions described in the section
"Reverse Mapping" earlier in this chapter. The page_referenced()
function also honors the swap token; see the section "The Swap Token" later
in this chapter.

prac?thisfunction does a lot more than move pages from the active to the

inactive list, so we are going to describe it in greater detail.
When | tried to find a variable named PG_referenced in struct page, | failed unfortunately. But | can
find another enum type named pageflags at linux/page-flags.h, who contains it. However, | didn’t
found this struct in struct page. Therefore, | assume that this is not a concrete variable in code, but
a concept for understanding, while we can use its interface function like page_referenced() to
change a page’s state. There's a lot of other functions to be discover, | need to find what's useful
for my implementation.
At 17.3.2.6. of the ULK book shows the core part of PFRA, i.e. the shrink_list() function:

The shrink_list() function

We have now reached the heart of page frame reclaiming. While the purpose
of the functions illustrated so far, from try_to_free_pages() to
shrink_cache(). was to select the proper set of pages candidates for

reclaiming, the shrink_1ist() function effectively tries to reclaim the
pages passed as a parameter in the page_Llist list. The second parameter,
namely sc, is the usual pointer to a scan_control descriptor. When
shrink_list() returns, page_list contains the pages that couldn't be
freed.

The function performs the following actions:

1. 1f the need_resched field of the current process is set, it invokes
schedule().

(&)

. Starts a cycle on every page descriptor included in the page_11ist list.
For each list item, it removes the page descriptor from the list and tries
to reclaim the page frame: if for some reason the page frame could not
be freed, it inserts the page descriptor in a local list.

3. Now the page_list list is empty: the function moves back the page
descriptors from the local list to the page_list list.

4. Increases the sc->nr_reclaimed field by the number of page frames
reclaimed in step 2, and returns that number.

However, in our source code of android virtual device, the function was implemented as

shrink_active_list() at mm/vmscan.c:

"E, pgmoved);

d long nr_to_scan,
mem_cgroup_zone *mz,
scan_control *sc,

priority, int file)

#ifdef CONFIG_SWAP

4.3. Implementing Details
As analyzed, the original referenced bit was changed only through the interface function, while
our new algorithm just defines and modify a new variable, the main work was to change anything
related with the interface function, i.e. TestClearPageReferenced(),ClearPageReferenced() ,
SetPageReferenced(), and anything related with them.
Firstly we define the new variable, PG_referenced (this name won't result in conflict, so it might

confirmed my assumption before) at linux/mm_types.h

C mm_types.h ®

page {
efined(CONFIG_HAVE CMPXCHG_DOUBLE

CONFIG 64BIT

dif
USE SPLIT PTLOCKS
dif

ined(WANT PAGE VIRTUAL

f CONFIG WANT PAGE DEBUG FLAGS

f CONFIG_KMEMCHECK

PG_referenced;

Since originally mark_page_referenced() at mm/swap.c was implemented according to 0 or 1 of

“PG_referenced”, we change this to shifting right this variable:

mark_page accessed(st t page *page)

activate page(page);

nced = p
d += INCREASE VALUE;

I
EXPORT_SYMBOL (mark _page accessed);

Here is also a function use ClearPageReferenced(), we just deleted it in case something wrong

(Though I think it won't be anything wrong if it's not deleted).

i lru_deactivate fn(e *page, d *arg)

lru, file;
active;

if (page mapped(page))
active = PageActive(page);

page_is_file cache(page);

ne, page, lru + active);

add page to lru list(zone, page, lru)

The shrink_active_list() in mm/vmscan was called at a period of time, and move some pages from

active_list to inactive_list. We need to change its moving condition:

spin
(*g 2 or(page)) (page) ;
lru_lock);

list_add(&page->lru, pages_to_free);

b
}
mod_zone_page_s ne, NR_LRU BASE + lru, pgmo

(!is_active lr
count_vm DEACTIVATE, pgmoved) ;

shrink_acti

“HEAD(1_inactive);
page *
at *reclaim_stat A im_stat (mz);
ed = 0;

lru_add_drain();

reclaim_mod:

if (y_writy

spin_lock irq(&

1list_empty (81 hold)) {
d

Linit)) {

pag

printk(K
ad

The final function to modify was page_check_references(). In the original design, if a lot of process
shares one page, multiple access was recorded as one, so we need to keep this property. The way

is also to change the condition value to meet our own PG_referenced:

vmsaanc X

PAGEREF_ACTIVATE,

page_referer

referenced ptes, referenced page;

referenced ptes = page referenced(page, 1, em_cgroup, &vm flags);

referenced pa pag
printk(KERN_INFO"page \n", page->index);

aim mode & RECLAIM MODE_LUMPYRECLAIM)
PAGEREF_RECLAIM;

vm_flags & VM_LOCKED)
eturn PAGEREF RECLAIM;

if (referenced
jefine SHRESHOLD 1
f (referenced page SHRESHOLD || referenced ptes
\ PAGEREF_ACTIVATE;

4.4. Test and Result

4.4.1. Memory information before the change of algorithm
The following screen capture was captured before compiling the kernel:

252 | root@generic: /data/misc # cat /proc/meminfo
MemTotal: 1017948 kB
MemFr 577016 kB
Buffer 8048 kB
Cached 271268 kB
SwapCached: 0 kB
184648 kB
227412 kB
132752 kB
26912 kB
51896 kB
200500 kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
132776 kB
137900 kB
26940 kB
14476 kB
5576 kB
8900 kB
3272 kB
7504 kB
0 kB
0 kB
0 kB
508972 kB
| 3873988 kB
[VmallocTotal 245760 kB
VmallocUsed 36860 kB
180228 kB
root@generic: /data/misc # I

4.4.2. After recompiling the kernel
The following is the first time | started my AVD. The left screen shows some help
information | use to know if | do the change successfully (Deleted later, while we can see
that mark_page_referenced() was called very frequently but others were not). At this
moment, K=10 and THRESHOLD =2°,

File Edit View Search Terminal Help
40940 kB
182276 kB
File Edit rch e root@generic:/ # cat /proc/meminfo
mark_page_ d(0936) 1016924 kB
mark_page_accessed -650936 5
e a{ = f; 60 kB
261228 kB
© kB
176544 kB
208692 kB

Unevictable

Mlocked:

HighTotal 270336 kB

HighFr 3636 kB
746588 kB
599044 kB

Bounc
writel
508460 kB
4638676 kB
245760 kB
40940 kB
182276 kB
cat /proc/meninfo
1016924 kB
587512 kB
7152 kB
270872 kB

mark_page_ac 1

mark_page_accessed(): page 3 Active(anon):
Inactive(anon):
Active(file,
Inactive(file

It seems K=10 and SHREAHOLD=2° is OK for now.

The kswapd() thread will be invoked only when memory was almost full. So to make sure

my new algorithm works, | have to write another program to apply a large number of
memory.
Here is the result of my rest program “test” (source code “test.c”, the later test was):

Running the test program,

The correctness seems to be confirmed.

Since K and THRESHOLD should be picked by ourselves, | think | need to try some more
value to discover some differences. Therefore | modified the test program to record the

memory information.

The following is the first time | try to occupy memnory, K=8, THRESHOLD=2° we can see
from the information at first it increase the number of active list. But when the second
time | start it, it get killed soon.

root@generic:/data/misc # ./test
Start test.

active list inactive list free memory
279224 147376

347096 147376

414816 147412

482668 147648

545352 147596

617076 147992

684952 149744

752960 152216

821088 153088

923508 61904

~Z[2] + Stopped .jtest
root@generic:/data/misc # ./test
Start test.

active list inactive list free memory
808924 158332 30700

741124 226052 30964

673120 293504 31008

601324 361552 34668

520468 430012 46924

447680 498664 50692

379976 565464 51376

312024 633124 51408

244072 700812 51420

176244 768276 51548

108788 835668 51556

40956 9603612 51168

Killed

[2] + Killed

[1] - Killed

Then | set K=12, THRESHOLD=2° and get:

youngzt@ubuntu
root@generic:/ # cd /data/misc

root@generic: /data/misc # ./test
Start test.

active
697676
626732
551260
483572
414652
344832
276236
201588
133900
65808

12264

12068

Killed

list
133124
202652
2751460
342656
410972
479448
547500
617300
684700
752428
832736
918100

> adb

inactive list free memory
169204
170516
173352
173308
173504
174628
174820
179208
179200
179296
150760
64956

137 | root@generic: /data/misc # [

Then | set K=16, THRESHOLD=2° and get:

youngz t@ubuntu
root@generic:/ # cd fdata/misc

root@generic: /data/misc # ./test
Start test.

list
148928
216804
287532
356408
424728
493604
567320
635140
702876
770456
838044
910992

> adb

inactive 1list free memory
80808
80888
88000
93360
95256
96868
99640
99796
99812
99812
99812
70596

The firs thing to find is that when the process get killed, the free memory is larger if

K/log(THRESHOLD) is larger. So probably the first one is a better choice.

The data was also contained in my submitted files.

| also run the program of problem 2,3 and project 1 and it shows no problem of the

system, i.e. no crash happens:

ptree is fine:

VATranslate and vm_inspector is also fine:

Discussion

This might be the most difficult project I've ever meet in my undergraduate study, but | do learned quite a
lot, including finding articles and reading text book for useful information, and understand briefly about
how linux kernel manage memory sysem . Discussion with classmates is also cery important (thanks for

Y.X.Li and J.X.Li, who discussed a lot with me and enhanced my knowledge).
Appendix

1. Any *.c *.h *».mk file required was contained in submitted files;

2. Some test file of problem 4;

3. Figures to explain my undersdanding and design was attached with submitted files, named “figures for
report.pptx”. (If | misunderstanding the structure of the system please let me know in some way If it
was right, or even it would be helpful for future course of CS307 or CS356, I'd be very happy:)

4. A README file explaining the file structure was contained in submitted files.

Reference

mmap() system call:
https://www.zhihu.com/question/48161206 (user “/n nek’ ‘s answer)
https://www.cnblogs.com/huxiao-tee/p/4660352.html

walk_page_range() function:

https://elixir.bootlin.com/linux/v4.0/source/mm/pagewalk.c#L239

http://bricktou.cn/mm/pagewalk_walk_page_range_en.html

http://www.cs.columbia.edu/~krj/os/lectures/L17-LinuxPaging.pdf
http://www.vuln.cn/7036

remap_pfn_range() function:

http://blog.rootk.com/post/kernel-memory-mapping.html

https://www.zhihu.com/question/48161206
https://www.cnblogs.com/huxiao-tee/p/4660352.html
https://elixir.bootlin.com/linux/v4.0/source/mm/pagewalk.c#L239
http://bricktou.cn/mm/pagewalk_walk_page_range_en.html
http://www.cs.columbia.edu/%7Ekrj/os/lectures/L17-LinuxPaging.pdf
http://blog.rootk.com/post/kernel-memory-mapping.html

http://www.vuln.cn/7036

Zygote process:
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux_zygote.md
https://www.cnblogs.com/samchen2009/p/3294713.html
https://www.cnblogs.com/samchen2009/p/3294713.html

Linux Memory Management:
<<Under Sdanding the Linux Kernal, Third Edition >>
Chapter 8. Memory Management
8.1. Page Frame Management

8.2. Memory Area Management

The kswapd kernel threads
<<Under Sdanding the Linux Kernal, Third Edition >>
Chapter 17. The Page Frame Reclaiming
17.3. Implementing The PFRA

17.3.4. Periodic Reclaiming

Page Replacement Algorithm:
<<Under Sdanding the Linux Kernal, Third Edition >>
Chapter 17. The Page Frame Reclaiming

17.2. Reverse Mapping

17.3 Implementing The PFRA
http://www.cs.columbia.edu/~krj/os/lectures/L17-LinuxPaging.pdf
https://blog.csdn.net/zouxiaoting/article/details/8824896
https://linux-mm.org/PageReplacementDesign

Other Useful Information
Course website:

http://www.cs.sjtu.edu.cn/~fwu/teaching/cs307.html

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux_zygote.md
https://www.cnblogs.com/samchen2009/p/3294713.html
https://www.cnblogs.com/samchen2009/p/3294713.html
http://www.cs.columbia.edu/%7Ekrj/os/lectures/L17-LinuxPaging.pdf
https://blog.csdn.net/zouxiaoting/article/details/8824896
https://linux-mm.org/PageReplacementDesign

