
CS356: Operating System Project

Report for Project 2

Android Memory Management
Name: Ziteng Yang

This report contains how I implemented required program and functions, and the result of running and

testing. I also add some note when studying the Linux source code here, regarding it as part of “detail”, and

if its not required, please just skip it.

1. Problem 1: Compile the Kernel

This problem has nothing to with technological knowledge, since I just need to follow the instruction

step by step to configure environment, and enter “make -j4” at the terminal in kernel file’s location. In

fact, this is just a preparation for the following 3 problem.

2. Problem 2: Map a Target Process’s Page Table

2.1. Description

In the Linux kernel, the page table is broken into multiple levels. Address of a system with a 4-

level page table is as follows:

The system of my 32-bit android virtual devices has a 2-level page table, which means

pud=pmd=0 (found in implementation):

So the page table just has the following structure:

Out goal is to map this structure from kernel space into user space with our own system call. In

another word, given a pid of some process A and some virtual address, I need to use my own

process “VATranslate” to translate the virtual address into physical address. To complete the

mission, I need to use my system call to build my own outer page table and inner page table in

my process of user space, while accessing the inner table just gives us the physical address of

target process.

Related files: syscall.c(wrote by my self), VATranslate.c(wrote by myself), pagewalk.c (kernel file

changed a little), mm,h (kernel file changed a little)

2.2. Implementing Details

2.2.1. In general

Since I need to translate the virtual address right, I cannot just apply for a large number

of memory and copy the table from kernel space to user space, but need to access the

inner page table (pte) directly in read-only mode, like the following figure:

The relation built by remap_pfn_range will be discussed later.

2.2.2. Implementation of user program: VATranslate.c

The parameter reading is very easy:

Firtly we need to investigate the page table layout as required, so I invoke a system call

“get_pagetable_layout” (implemented in syscall.c), and just pass the struct to it and get

the answer:

Now I can build my fake page table. Firtly I need to allocate memory to fake outer

pagetable. Since this need a smaller scale of array, I can just use malloc:

Next is to allocate memory for fake inner page table, as the instruction says, “it's a bad

idea to use malloc to prepare a memory section for mapping page tables, because

malloc cannot allocate memory more than MMAP_THRESHOLD (128kb in default).

Instead you should consider to use the mmap system call”:

This system call builds a large memory area, but its virtual memory. Use the function

remap_pfn_rang() in system call “expose_page_table” can build a mapping relation of

fake inner page table and the “real” inner page table:

As we only translate one address, we only need a small interval between begin address

and end address, so assigned end_addr=begin_addr+1;

After the system call, if it works (assume it does), we should be able to visit the real inner

page table (PTE entry) through fake_pgd;

So we need to calculate pgd_index and pte_index at first:

This calculation formula is according to the following structure:

Finally we can access the page table and translate the virtual address:

Before returning we need to free the memory allocated, otherwise it would cause

memory leak.

2.2.3. Implementation of system call: syscall.c

This file in fact implemented two system call: get_pagetable_layout() and

expose_page_table().

The first system call is for investigating the page table layout. It just pass the 3 desired

parameter from kernel to user but nothing else:

The second system call is the core and most difficult part. I need to build the mapping

relationship here. It receive parameters including pid, begin and end address, the address

of fake outer page table and fake inner page table.

Firstly, we need to find the task_struct type of target process, according to pid, using

some existing function:

Then we need to apply for a memory of kernel space to store the outer page table, since

we already assume the outer page table won’t change for simplicity.

Later it would be copied to user.

The newly defined struct myPrivate was used to be carried into the calling of

walk_page_range function. This function we defined in mm/pagewalk.c . It can recursively

walk the page table for the memory area in a VMA, calling supplied callbacks. Callbacks

are called in-order (first PGD, first PUD, first PMD, first PTE, second PTE... second PMD,

etc.). If lower-level callbacks are omitted, walking depth is reduced. If any callback

returns a non-zero value, the walk is aborted and the return value is propagated back to

the caller. Otherwise 0 is returned. walk->mm->mmap_sem must be held for at least

read if walk->hugetlb_entry is not NULL.

The struct mm_walk is defined in linux/mm.h:

It has several function pointer, which woud be called every time the walk_page_range()

enter a pgd entry (calling walk->pgd()), a pud entry (calling walk->pud()), …

Since our purpose is to remap pte table to user space, and the system has a 2-level

page table, we need to accomplish the procedure every time we get into pgd_entry, and

remap the responding pte table touser program.

This structure also contains a point to the self-defined struct, so that we can carry some

useful variable to finish the walk.

Before walking the page, we need to initialize the mm_walk variable walk:

As we won’t need other function, only carry one so that it can finish the remap

procedure. The function was defined as following:

In this function, we find current process’s virtual memory area’s vm_area_struct variable,

and target page table’s page frame number (PTE) and use the function

remap_pfn_range() to remap the PTE to user space, each time an area of

PTE_SIZE*sizeof(unsigned long) .

Since this function was called each time walk_page_range enter a pgd, the whole page

table of target interval was remapped into user space.

Note: To successfully use function walk_page_range(), we need to add two sentences at

mm/pagewalk.c , and set it as external at linux/mm.h:

(Thanks for the discussion in our course’s Wechat group between Ruizhen Chen and

Jinwei Xi.)

2.3. Result

Following was some screen captures of running program VATranslate:

Test the “init” process (pid = 1):

Test the “kthreadd” process (pid =2).

Note: we can see from ps command that it and all child process of it has no virtual memory area,

therefore our system call must check this, otherwise “kernel panic” might occur if it tries to access

a empty pointer:

Test “sh” process (pid=190 when tested):

3. Problem 3: Investigate Android Process Address Space

3.1. Description

This problem was almost the same as the VATranslate program, but we need to translate a range

of virtual address.

We also need to discover some details about zygote

3.2. Implementing Details

Most part of it was the same as VATranslate.c, the main difference was that we need a for-loop to

check and translate valid virtual address.

3.3. Result

Following was a simple test of vm_inspector. The detail was discussed at 3.4.

3.4. Discovery

3.4.1. Dump page table twice while playing an app

I tried with “com.android.settings”. When I open it and dump its VMA again, I found in

the same interval, there is 3 more virtual page occurred:

This implies that when running an app, its virtual memory area are always changing.

3.4.2. About Zygote and other Android app

One thing need to be notice is that, when load new system call, we need to choose

carefully which old system call to be replaced. Initially I choose 356 and 357 just like

project 1, but when I came to problem 3, I found that zygote was killed again and again,

and the test is hard to continue. I spend a long time to discover that its initialization

need original system call 356 and 357, so I need to consider others. I also tried 233 and

666, and other mysterious things also happened… Finally someone told me 380 and 381

migth work, so I changed it and it didn’s go wrong.

We can easily search some material about the zygote process. It’s child process of init.

All process named “com.*” was forked from it.

The following figures shows some relationship with zygote process and other process.

Note when doing this test this, pid of zygote didn’t change and remain 84, so did its

child process.

We can see that all process who’s parent was zygote same to share the same page table,

i.e. using the same virtual address and physical address.

What about other app? We can see that in the following figure, only zygote and its child

process are mapped in this area above process tested.

We can also see from the following figure that zygote and /system/bin/keystore are

differently mapped in this area:

On the other hand, check the /proc/pid/maps file, I also get the result:

It again shows Zygote’s child process shares some memory area of it.

Check another process which is not Zygote’s child, I can easily they use totally different

memory area of Zygote.

When I was reading <<Under Standing the Linux Kernal, Third Edition>>, I also learned

that there did exits lots of page frame that are shared by multiple process (at Chapter

17.2). It also suggests that “Anonymous pages are often shared among several

processes. The most common case occurs when forking a new process…all page frames

owned by the parent—including the anonymous pages—are assigned also to the child ”.

Results above also confirmed the conception.

4. Problem 4: Change Linux Page Replacement Algorithm

4.1. Description

In this problem, we need to change the page replacement algorithm of our android virtual

devices.

The original algorithm and the target algorithm was briefly introduced in our instruction: add a

new referenced variable to reflect the importance of a page. If a page is referenced by process, it

should be shifted 1 bit to the right and added by 2K which is defined by myself. Otherwise, the

referenced value shifts 1 bit to the right for every period. I should check these two lists

periodically, moving the pages whose reference value is greater than or equal to a threshold that

defined by yourself to active list, and move the pages whose referenced value is smaller than it to

inactive list.

But its too high overview. So first we need to find useful material to read and learn how the

original algorithm was implemented, so that we can modify it and change to new one. The most

important material was the Chapter 17.3. (Implementing the PFRA) of the book << Understanding

the Linux Kernel, Third Edition >> (ULK book)

4.2. Knowledge Learning

All pages belonging to the User Mode address space of processes or to the page cache are

grouped into two lists called the active list and the inactive list; The former list tends to include the

pages that have been accessed recently, while the latter tends to include the pages that have not

been accessed for some time. Clearly, pages should be stolen from the inactive list.

The following messages was from 17.3.1. of ULK book:

The following figure captured from chapter 17.3.1. of ULK book, (PFRA=Page Frame Reclaim

Algorithm) shows a high level overview of how PFRA works (how functions are invoked) in Linux

operating system:

We can see from the figure how those function are invoked.

The next figure which is also from 17.3.1. of that book shows how a page frame’s state are changed

through pre-defined functions.

?

These should be the core function we need to understand, though its purpose seems easy for us.

The book explains some detail about mark_page_access():

We can see from above how the state of a page are changed to be “more active” through the

function. Following is what’s necessary to know about the page_referenced() function：

When I tried to find a variable named PG_referenced in struct page, I failed unfortunately. But I can

find another enum type named pageflags at linux/page-flags.h, who contains it. However, I didn’t

found this struct in struct page. Therefore, I assume that this is not a concrete variable in code, but

a concept for understanding, while we can use its interface function like page_referenced() to

change a page’s state. There’s a lot of other functions to be discover, I need to find what’s useful

for my implementation.

At 17.3.2.6. of the ULK book shows the core part of PFRA, i.e. the shrink_list() function:

However, in our source code of android virtual device, the function was implemented as

shrink_active_list() at mm/vmscan.c:

4.3. Implementing Details

As analyzed, the original referenced bit was changed only through the interface function, while

our new algorithm just defines and modify a new variable, the main work was to change anything

related with the interface function, i.e. TestClearPageReferenced(),ClearPageReferenced() ,

SetPageReferenced(), and anything related with them.

Firstly we define the new variable, PG_referenced (this name won’t result in conflict, so it might

confirmed my assumption before) at linux/mm_types.h

Since originally mark_page_referenced() at mm/swap.c was implemented according to 0 or 1 of

“PG_referenced”, we change this to shifting right this variable:

Here is also a function use ClearPageReferenced(), we just deleted it in case something wrong

(Though I think it won’t be anything wrong if it’s not deleted).

The shrink_active_list() in mm/vmscan was called at a period of time, and move some pages from

active_list to inactive_list. We need to change its moving condition:

The final function to modify was page_check_references(). In the original design, if a lot of process

shares one page, multiple access was recorded as one, so we need to keep this property. The way

is also to change the condition value to meet our own PG_referenced:

4.4. Test and Result

4.4.1. Memory information before the change of algorithm

The following screen capture was captured before compiling the kernel:

4.4.2. After recompiling the kernel

The following is the first time I started my AVD. The left screen shows some help

information I use to know if I do the change successfully (Deleted later, while we can see

that mark_page_referenced() was called very frequently but others were not). At this

moment, K=10 and THRESHOLD =25.

It seems K=10 and SHREAHOLD=25 is OK for now.

The kswapd() thread will be invoked only when memory was almost full. So to make sure

my new algorithm works, I have to write another program to apply a large number of

memory.

Here is the result of my rest program “test” (source code “test.c”, the later test was):

Running the test program,

The correctness seems to be confirmed.

Since K and THRESHOLD should be picked by ourselves, I think I need to try some more

value to discover some differences. Therefore I modified the test program to record the

memory information.

The following is the first time I try to occupy memnory, K=8, THRESHOLD=25 we can see

from the information at first it increase the number of active list. But when the second

time I start it, it get killed soon.

Then I set K=12, THRESHOLD=25 and get:

Then I set K=16, THRESHOLD=25 and get:

The firs thing to find is that when the process get killed, the free memory is larger if

K/log(THRESHOLD) is larger. So probably the first one is a better choice.

The data was also contained in my submitted files.

I also run the program of problem 2,3 and project 1 and it shows no problem of the

system, i.e. no crash happens:

ptree is fine:

VATranslate and vm_inspector is also fine:

Discussion

This might be the most difficult project I’ve ever meet in my undergraduate study, but I do learned quite a

lot, including finding articles and reading text book for useful information, and understand briefly about

how linux kernel manage memory sysem . Discussion with classmates is also cery important (thanks for

Y.X.Li and J.X.Li, who discussed a lot with me and enhanced my knowledge).

Appendix

1. Any *.c *.h *.mk file required was contained in submitted files;

2. Some test file of problem 4;

3. Figures to explain my undersdanding and design was attached with submitted files, named “figures for

report.pptx”. (If I misunderstanding the structure of the system please let me know in some way… If it

was right, or even it would be helpful for future course of CS307 or CS356, I’d be very happy…)

4. A README file explaining the file structure was contained in submitted files.

Reference

mmap() system call:

https://www.zhihu.com/question/48161206 (user “in nek” ‘s answer)
https://www.cnblogs.com/huxiao-tee/p/4660352.html

walk_page_range() function:

https://elixir.bootlin.com/linux/v4.0/source/mm/pagewalk.c#L239
http://bricktou.cn/mm/pagewalk_walk_page_range_en.html
http://www.cs.columbia.edu/~krj/os/lectures/L17-LinuxPaging.pdf
http://www.vuln.cn/7036

remap_pfn_range() function:

http://blog.rootk.com/post/kernel-memory-mapping.html

https://www.zhihu.com/question/48161206
https://www.cnblogs.com/huxiao-tee/p/4660352.html
https://elixir.bootlin.com/linux/v4.0/source/mm/pagewalk.c#L239
http://bricktou.cn/mm/pagewalk_walk_page_range_en.html
http://www.cs.columbia.edu/%7Ekrj/os/lectures/L17-LinuxPaging.pdf
http://blog.rootk.com/post/kernel-memory-mapping.html

http://www.vuln.cn/7036

Zygote process:

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux_zygote.md
https://www.cnblogs.com/samchen2009/p/3294713.html
https://www.cnblogs.com/samchen2009/p/3294713.html

Linux Memory Management:

<<Under Sdanding the Linux Kernal, Third Edition >>

 Chapter 8. Memory Management

8.1. Page Frame Management

8.2. Memory Area Management

The kswapd kernel threads

<<Under Sdanding the Linux Kernal, Third Edition >>

 Chapter 17. The Page Frame Reclaiming

 17.3. Implementing The PFRA

 17.3.4. Periodic Reclaiming

Page Replacement Algorithm:

<<Under Sdanding the Linux Kernal, Third Edition >>

Chapter 17. The Page Frame Reclaiming

17.2. Reverse Mapping

17.3 Implementing The PFRA

http://www.cs.columbia.edu/~krj/os/lectures/L17-LinuxPaging.pdf
https://blog.csdn.net/zouxiaoting/article/details/8824896
https://linux-mm.org/PageReplacementDesign

Other Useful Information

Course website：

http://www.cs.sjtu.edu.cn/~fwu/teaching/cs307.html

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux_zygote.md
https://www.cnblogs.com/samchen2009/p/3294713.html
https://www.cnblogs.com/samchen2009/p/3294713.html
http://www.cs.columbia.edu/%7Ekrj/os/lectures/L17-LinuxPaging.pdf
https://blog.csdn.net/zouxiaoting/article/details/8824896
https://linux-mm.org/PageReplacementDesign

