
Fully Verified Instruction Scheduling

ZITENG YANG, Georgia Institute of Technology, USA
JUN SHIRAKO, Georgia Institute of Technology, USA
VIVEK SARKAR, Georgia Institute of Technology, USA

CompCert project, the state-of-the-art compiler that achieves the first end-to-end formally verified C compiler,

does not support fully verified instruction scheduling. Instead, existing research that works on such topics

only implements translation validation. This means they do not have direct formal proof that the scheduling

algorithm is correct, but only a posterior validation to check each compiling case. Using such a method,

CompCert accepts a valid C program and compiles correctly only when the untrusted scheduler generates

a correct result. However, it does not guarantee the complete correctness of the scheduler. It also causes

compile-time validation overhead in the view of runtime performance.

In this work, we present the first achievement in developing a mechanized library for fully verified

instruction scheduling while keeping the proof workload acceptably lightweight. The idea to reduce the proof

length is to exploit a simple property that the topological reordering of a topological sorted list is equal to a

sequence of swapping adjacent unordered elements. Together with the transitivity of semantic simulation

relation, the only burden will become proving the semantic preservation of a transition that only swaps

two adjacent independent instructions inside one block. After successfully proving this result, proving the

correctness of any new instruction scheduling algorithm only requires proof that it preserved the syntax-level

dependence among instructions, instead of reasoning about semantics details every time. We implemented a

mechanized library of such methods in the Coq proof assistant based on CompCert’s library as a framework

and used the list scheduling algorithm as a case study to show the correctness can be formally proved using

our theory.

We show that with our method that abstracts away the semantics details, it is flexible to implement any

scheduler that reorders instructions with little extra proof burden. Our scheduler in the case study also

abstracts away the outside scheduling heuristic as a universal parameter so it is flexible to modify without

touching any correctness proof.

CCS Concepts: • Theory of computation→ Program verification; Operational semantics; • Software
and its engineering→ Formal software verification; Compilers.

Additional Key Words and Phrases: Compiler Verification, Coq Proof Assistant, CompCert, Instruction-level

Parallelism

ACM Reference Format:
Ziteng Yang, Jun Shirako, and Vivek Sarkar. 2024. Fully Verified Instruction Scheduling. Proc. ACM Program.
Lang. 8, OOPSLA2, Article 299 (October 2024), 26 pages. https://doi.org/10.1145/3689739

Authors’ Contact Information: Ziteng Yang, Georgia Institute of Technology, Atlanta, USA, ziteng.yang@gatech.edu; Jun

Shirako, Georgia Institute of Technology, Atlanta, USA, shirako@gatech.edu; Vivek Sarkar, Georgia Institute of Technology,

Atlanta, USA, vsarkar@gatech.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART299

https://doi.org/10.1145/3689739

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-5849-7409
HTTPS://ORCID.ORG/0000-0002-7900-7680
HTTPS://ORCID.ORG/0000-0002-3433-8830
https://doi.org/10.1145/3689739
https://orcid.org/0000-0001-5849-7409
https://orcid.org/0000-0002-7900-7680
https://orcid.org/0000-0002-7900-7680
https://orcid.org/0000-0002-3433-8830
https://doi.org/10.1145/3689739
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

299:2 Ziteng Yang, Jun Shirako, and Vivek Sarkar

1 Introduction
1.1 Compiler Correctness and Formally Verified Compiler
There has been significant progress on the topic of compiler correctness in the past decades. A key

goal for compiler correctness is to formally verify the code translations performed by a compiler.

The CompCert certified compiler [31, 32] is the first successful project to formally verify a realistic

compiler translation. In the later decade, more advanced formal theories on more optimizing passes

[35], supporting linking [26, 27, 37, 46], concurrency [26, 43], improving memory models [6, 50], etc.

have occurred. In another aspect of the actual performance, both the compiler testing experiment

of [52] and [54] shows that CompCert’s verified passes have passed all the provided test cases while

GCC and Clang were found to have hundreds of test failures respectively.

We observed that most of the state-of-the-art research for certified compilation involving paral-

lelism/concurrency are compiling functions of the multi-thread program, a.k.a developing advanced

correctness theory for concurrent settings (e.g. [26, 33]). However, there’s much less progress on

improving the parallelism of a program: compile-time optimization for data/instruction/thread-level

parallelism. In other words, CompCert does not support -O2 or -O3 optimizations like GCC or Clang

currently. Instruction scheduling [4, 12, 17, 19, 22, 23, 51] is one of the most important methods to

improve instruction-level parallelism. It can be conducted during two different stages: runtime or

compile-time. Instruction scheduling during runtime is known as out-of-order (OOO) execution.

Compiler-level instruction scheduling statically reorders the instruction sequence to improve

CPU throughput by removing pipeline hazards and multi-issue pipeline performance by enhancing

instruction-level parallelism. Instruction scheduling is a key optimizing pass for in-order processors,

which do not support out-of-order pipeline execution in hardware so as to achieve higher energy

efficiency, lower hardware cost, and more predictable execution time. These characteristics are

often critical for various areas, including embedded systems and mobile devices [15, 49].

1.2 Related Work on Instruction Scheduling and its Verification
Instruction scheduling is a classical compiler optimization pass that aims to minimize the schedule

length of given code fragments on the target processor. The instruction scheduling problem can be

classified into local scheduling to reorder instructions within a basic block and global scheduling
to reorder instructions within and across basic blocks (also referred as intra-block scheduling and
inter-block scheduling). The optimal local scheduling problem for modern multi-issue pipelined

processors is known to be NP-complete [5]. Although the approach based on integer programming

can produce the optimal schedule in a reasonable time [51], heuristic approaches typified by

list scheduling [12, 23, 28] are often used in production compilers to achieve fast and efficient

scheduling. The global scheduling problem also has a long history and there is an extensive body

of literature including scheduling algorithms targeting VLIW processors [17, 20, 22, 30, 41] and

superscalar machines [4, 11, 13, 19].

To the best of our knowledge, the most recent existing works for supporting instruction sched-

uling in a verified compiler are that of [48], which achieved translation validation [36, 39] and

a case study on list scheduling and trace scheduling [18, 22], and the more recent work on [44]

which also used translation validation for a list-scheduling instruction scheduling pass for VLIW

architecture and its follow-up papers [24, 45] that use the same approach to further support and

improve inter-block instruction scheduling. However, there’s a major difference between direct

verification (the goal of this paper) and verified translation validation (past work), as explained in

the next subsection.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:3

1.3 Full Verification v.s. Verified Translation Validation
Full verification includes proving the correctness of the entire algorithm for a compiler pass, while

verified translation validation includes only proving the correctness of the checker of the algorithm.

In general, full verification is preferable to translation validation. However, it can be much more

challenging due to its heavy verification requirements. A representative example is verifying

register allocation compiler pass in CompCert using a graph coloring algorithm. In the work of [7],

4300 lines of Coq proof codes were used to formally verify the register allocation pass in CompCert,

with a prior lemma of 10,000 lines proof on the graph coloring algorithm. Compared with this, the

verified translation validation was also presented in the same year, with only 900 lines of proofs

[42].

We summarize both the benefits and drawbacks of these two technical routes that aim to

guarantee software safety:

Full Verification: verifying the correctness of an algorithm for a compiler pass,

• Core Technology: correctness of an algorithm

• Pro: Full correctness guarantee: verified scheduler has no bug and any execution instance

will be correct.

• Cons: Development-time overhead: potentially heavy work and strongly related to algorithm

implementation (our work will show there exists acceptable length of proofs for verifying

instruction scheduling).

• Pro: No runtime overhead: correctness is checked during development with no overhead

incurred at runtime.

Verified Translation Validation: correctness of each result from each input of an algorithm

• Core Technology: Symbolic Execution of source/target codes

• Pro: Simpler Correctness Proof and independent of algorithm implementations

• Cons: Partial correctness guarantee: only guarantee each execution instance will reject the

wrong result by scheduler bugs. Also if the validator is incomplete, it may reject a valid

program.

• Cons: Run-time overhead: correctness requires runtime validation and usually has high

complexity

More formally, the correctness proof for the verified translation validator builds on the following

lemma:

∀𝑝𝑠 𝑝𝑡 : 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 (𝑝𝑠) = 𝑂𝐾 𝑝𝑡 → 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑝𝑠 , 𝑝𝑡) = 𝑡𝑟𝑢𝑒 → 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑠 , 𝑝𝑡)
while the result of direct verification is proved to have:

∀𝑝𝑠 𝑝𝑡 : 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 (𝑝𝑠) = 𝑂𝐾 𝑝𝑡 → 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑠 , 𝑝𝑡)
which is a much stronger result.

Fig. 1 shows the difference between verified translation validation and full verification in terms

of instruction scheduling passes.

1.4 Contributions
In the conclusion of [48], the authors write that they believe it would be significantly more difficult

to directly prove the correctness of list scheduling. However, our experience in this work shows that

the proof burden can lead to relatively lightweight workloads for proof, compared with previous

verification work on instruction scheduling.

In this work, we introduce the first known machine-independent correctness framework that

supports a full correctness proof for intra-block scheduling, i.e. instruction scheduling within a basic

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:4 Ziteng Yang, Jun Shirako, and Vivek Sarkar

Scheduling Pass

Scheduler 𝑆: 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 → 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

Untrusted

Error

Validate(p, p’)IR program 𝑝 𝑝′

Trusted

OK

Other Passes

Compiler Bug, Revise Scheduler

(a) Verified Translation Validation [44, 48]

Scheduling Pass

Scheduler 𝑆: 𝑂𝑟𝑎𝑐𝑙𝑒 → 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 → 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

Untrusted

IR program 𝑝 𝑝′

Trusted

Other Passes

Any Scheduler Oracles 𝑂

OK

(b) Full Verification (This work)

Fig. 1. Comparasion between two verification results of instruction scheduling

block. Our result is a once-for-all formal correctness framework with an acceptable length (around

3,000 lines of Coq code) for proving any instruction scheduling algorithm. We then implemented

a case study on its usage of proving list scheduling on Risc-V architecture using critical path

scheduling as a heuristic, which also shows optimization improvements on benchmarks PolyBench

C 4.2. The proof of this case study has around further 1,000 lines of Coq code.

We summarize the highlights of our results as multiple levels of flexibility:

• Flexible algorithm changes: Our framework guarantees that any program transformation

can be proved semantically sound by only proving that it satisfies the dependency relation

defined in syntax level of the original program, without repeatedly reasoning anything about

semantic details again. That means changing a scheduling algorithm only changes a small

part of the proofs.

• Flexible instruction scheduling heuristics: as we implemented list scheduling as a case study,

the heuristics to give priority when scheduling an instruction is an abstract parameter in our

proof. This means it can be any heuristics that vary among different machine architectures,

runtime environments, or even profiling results, etc., and the actual choice does not influence

the correctness so it does not change proof codes. This part makes our methods equally

flexible as previous translation validation methods

• Flexible Machine Architecture: combined with CompCert’s original design, our implementa-

tion of correctness theorems is almost machine-independent except for only less than 100

lines of lemmas related to machine architecture.

We built our implementation of this theory into CompCert’s backend (CompCert 3.12) thus it can

directly improve the compiler effect of verified compilation of C programs and any other compiler

engineering that uses CompCert’s backends.

1.5 Structure of This Paper
Section 2 introduces some fundamental concepts related to instruction scheduling and basic settings

of the language model of CompCert’s low-level IR that make this paper’s theory established from

the ground up.

Section 3 briefly summarizes the main logical chain of our solution and the architecture of our

implementation. Readers can refer to it for a quick overview of our approach.

Sections 4 and 5 give our complete theory following the logical chain introduced in Section 3.

Section 5 shows how to use theories in Section 4 to prove the correctness (semantics preservation)

of a concrete instruction scheduling algorithm without additional reasoning on semantics details.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:5

Section 6 explains critical implementation details in Coq proof assistant based on CompCert’s

original framework and case implementation on list scheduling (excluding heuristics). Readers

interested in Coq definition/proof details can refer to this section.

Section 7 introduces our case implementation of scheduling heuristic towards the RISC-Vmachine,

together with Section 8 that presents the evaluation results in both view of proof engineering and

compiler optimization performance of the scheduler we implemented for CompCert.

2 Background
In this section, we introduce several existing basic concepts and settings as a preparation for our

work.

2.1 Compiler-level Instruction Scheduling
Pipeline stall or pipeline hazards is a common performance issue in pipelined architecture, which

decreases the overall CPU throughput due to instruction-level data/control dependencies and

hardware resource conflicts. Out-of-order execution is a key micro-architectural technique to avoid

pipeline stall by dynamically reordering the instruction sequence, at the cost of hardware and

algorithmic complexity in processor pipelines. To achieve higher energy efficiency and lower hard-

ware cost, in-order processors are often adopted in areas including mobile devices and embedded

systems [15, 49]. On in-order processors, it is the responsibility of compilers to avoid pipeline stall

and enhance instruction-level parallelism for multi-issue pipelines. Instruction scheduling serves

as the fundamental compiler pass that statically reorders the instruction sequence to improve

instruction-level parallelism and reduce pipeline stall for in-order processors. Cited as an example,

GCC implemented this pass in its O2 options.

Examples in Fig. 2b shows the effect of reordering independent instructions: it may reduce the

cycles per instruction (CPI) by enabling parallel functional unit resource usage.

𝑖3

𝑖4

𝑖1

𝑖5

𝑖2

reads 𝒓𝟏

writes 𝒓𝟏
writes 𝒓𝟐

writes 𝒓𝟐
writes 𝒓𝟑 WAW WAR

reads 𝒓𝟑
writes 𝒎𝒆𝒎

WAW(mem)

writes 𝒎𝒆𝒎
RAW

(a) Data dependence of some basic block [𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5].

Cycle ADD SUB FLOAT

1 𝑖1 𝑖1
2 𝑖1
3 𝑖2 𝑖2
4 𝑖2
5 𝑖3 𝑖3
6 𝑖4 𝑖4
7 𝑖5 𝑖5 𝑖5

Cycle ADD SUB FLOAT

1 𝑖1 𝑖1
2 𝑖4 𝑖4 𝑖1
3 𝑖2 𝑖2
4 𝑖2
5 𝑖3 𝑖3
6 𝑖5 𝑖5 𝑖5
7

(b) Effect of Instruction Scheduling. An instruc-
tion was filled in some cycle if it occupies that
resource in that cycle.

Fig. 2. Example on instruction scheduling under some dependence

2.2 Dependence Relation
The execution of a program at machine’s view can be considered as a sequence of instructions that

are processed under program control flow. We revisit the basic concept of data dependence, which

is the principal legality constraint of instruction scheduling.

Dependence relation is a binary relation between two program instructions that access a register

or the same memory location and at least one is write access. A dependence relation, 𝑖1 → 𝑖2

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:6 Ziteng Yang, Jun Shirako, and Vivek Sarkar

to denote 𝑖1 must be in front of 𝑖2, can be classified into three groups: (i) read-after-write (RAW)

if instruction 𝑖1 writes an identical register or memory location 𝑟 and instruction 𝑖2 reads 𝑟 ; (ii)

write-after-read (WAR) if 𝑖1 reads 𝑟 and 𝑖2 writes 𝑟 ; (iii) write-after-write (WAW) if 𝑖1 writes 𝑟 and 𝑖2
writes 𝑟 . The scheduling of example in Fig. 2b follows the dependence relation in Fig. 2a. There is

an extensive body of literature to analyze whether two memory accesses are in isolated locations,

which is orthogonal to the scope of this paper. We roughly define memory accesses in default have

data dependence on each other in this paper.

Any compiler pass that reorders instructions must obey the rules that dependence relation is not

changed. One of the major works of this paper is formally proving that as long as such rules are

obeyed, the (mechanized) semantics preservation will be preserved.

2.3 Abstract Language of Low-level IR and Semantics Model of CompCert
We introduce the abstract model of the low-level IR where we conduct scheduling algorithms.

2.3.1 IR Language Model. For simplification, we ignored most of the irrelevant structure of IR and

only kept the common three-address code that triggers the main formal proof burdens of this work.

Definition 1. (Abstract IR Model)

• 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ::= 𝐼𝑜𝑝 (𝑜𝑝, 𝑟𝑠𝑟𝑐 , 𝑟𝑑𝑠𝑡) | 𝐼𝑙𝑜𝑎𝑑 (𝑎𝑑𝑑𝑟, 𝑑𝑠𝑡) | 𝐼𝑠𝑡𝑜𝑟𝑒 (𝑠𝑟𝑐, 𝑎𝑑𝑑𝑟) | 𝐼𝑐𝑎𝑙𝑙 (𝑓) | 𝐼𝑙𝑎𝑏𝑒𝑙 | 𝐼𝑔𝑜𝑡𝑜
• 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 ::= (𝐼𝑑𝑓 , 𝐵𝑓 = [𝑖1 :: 𝑖2 :: ... :: 𝑖𝑚])
• 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑝 ::= (𝐼𝑑∗𝑝 , {𝑓1, 𝑓2, ...𝑓𝑛})

2.3.2 Operational Semantics. The semantics of a program in CompCert is defined as a transition

system (small step semantics) starting from some initial state and, if not entering an "infinite

stuttering", ending at a final state. Readers can refer to Part IV of [2] for details. Here we give a

concrete semantics model for low-level IR same way as [48], but omit some of the semantics details.

A state 𝑆 = (𝑡, 𝐼𝑑𝑓 , 𝑀, 𝑅,𝐶) consists of state type 𝑡 ∈ {𝐶𝑎𝑙𝑙, 𝑅𝑒𝑔𝑢𝑙𝑎𝑟, 𝑅𝑒𝑡𝑢𝑟𝑛}, current function-id
𝐼𝑑𝑓 , memory states𝑀 , register states 𝑅, and remaining code. We also use 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑝) to denote the

set of reachable program states of a program 𝑝 . Here are some semantics rules of the IR, given the

global environment 𝐺 :

• SEM-OP:
𝑖 = 𝐼𝑜𝑝 (𝑜𝑝, 𝑟𝑠𝑟𝑐 , 𝑟𝑑𝑠𝑡), 𝑣 = 𝑒𝑣𝑎𝑙 (𝑜𝑝, 𝑟𝑠𝑟𝑐 , 𝑟𝑑𝑠𝑡)

𝐺 ⊢ (𝑅𝑒𝑔𝑢𝑙𝑎𝑟, 𝑓 , 𝑀, 𝑅, 𝑖 :: 𝑙) {𝜖 (𝑅𝑒𝑔𝑢𝑙𝑎𝑟, 𝑓 , 𝑀, 𝑅 [𝑟𝑑𝑠𝑡 ← 𝑣], 𝑙)

• SEM-LOAD
𝑖 = 𝐼𝑙𝑜𝑎𝑑 (𝑎𝑑𝑑𝑟, 𝑑𝑠𝑡), 𝑣 = 𝑙𝑜𝑎𝑑 (𝑀,𝑎𝑑𝑑𝑟)

𝐺 ⊢ (𝑅𝑒𝑔𝑢𝑙𝑎𝑟, 𝑓 , 𝑀, 𝑅, 𝑖 :: 𝑙) {𝜖 (𝑅𝑒𝑔𝑢𝑙𝑎𝑟,𝑀, 𝑅 [𝑟𝑑𝑠𝑡 ← 𝑣], 𝑙)

• SEM-STORE
𝑖 = 𝐼𝑠𝑡𝑜𝑟𝑒 (𝑠𝑟𝑐, 𝑎𝑑𝑑𝑟), 𝑅 [𝑠𝑟𝑐] = 𝑣, 𝑀 ′ = 𝑠𝑡𝑜𝑟𝑒 (𝑀, 𝑣)
𝐺 ⊢ (𝑅𝑒𝑔𝑢𝑙𝑎𝑟, 𝑓 , 𝑀, 𝑅, 𝑖 :: 𝑙) {𝜖 (𝑅𝑒𝑔𝑢𝑙𝑎𝑟, 𝑓 , 𝑀 ′, 𝑅, 𝑙)

An initial state of a program is in the form SIp = (𝐶𝑎𝑙𝑙,MI,RI,𝐶 (𝑓𝐼𝑑∗)). A state is said to be a final

state if its in the shape (𝑅𝑒𝑡𝑢𝑟𝑛, _, _, 𝑛𝑖𝑙)

2.3.3 Program Behavior. We define the behaviour of a program to be the event trace generated by

it.

Definition 2. (Program Behavior: halting) We say a program 𝑝 behaves with a finite event trace 𝑒 ,

denoted by E(𝑝, 𝑒), if exists a final state 𝑆 𝑓 such that SIp {∗𝑒 𝑆 𝑓

Definition 3. (Program Behavior: stuttering) We say a program 𝑝 behaves with an infinite event

trace 𝑒∞, denoted by E(𝑝, 𝑒∞), if exists a final state 𝑆 𝑓 such that SIp {∗𝑒 𝑆 𝑓

Definition 4. (Program Behavior: error) We say a program 𝑝 can result in an error with a finite

event trace 𝑒 , denoted by E(𝑝, 𝑒), if exists a non-final states 𝑆𝑒𝑟𝑟 such that SIp {∗𝑒 𝑆𝑒𝑟𝑟 and there

doesn’t exist any state 𝑆 such that 𝑆𝑒𝑟𝑟 { 𝑆 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:7

We also use E(𝑝) to denote the set of all possible program behavior of a program 𝑝 .

2.4 Compiler Correctness (Semantic Preservation)
The correctness of a compiler is defined as a refinement relationship: the behavior of target program

is a “subset” of the behavior of source program.

Definition 5. (Refinement Relation) We say the target program 𝑝𝑡 is a refinement of the source

program 𝑝𝑠 if E(𝑝𝑡) ⊆ E(𝑝𝑠), denoted by 𝑝𝑡 ⊑ 𝑝𝑠
The simulation relation that implies the refinement relation in this paper is discussed between

two programs in the same intermediate language. There are two types of semantics preservation:

forward simulation and backward simulation. The backward simulation of any source program

and its compiled target program is the final result we need to reach, since it directly implies the

refinement relation.

S2
𝑠

S2
𝑡S1

𝑡

S1
𝑠

𝑹𝒎
 𝑹𝒎

𝒆

𝒆

(a) Forward simulation

S2
𝑠

S2
𝑡S1

𝑡

S1
𝑠

𝑹𝒎
 𝑹𝒎

𝒆

𝒆

(b) Backward simulation

Fig. 3. Simulation relations between program’s small-step semantics

Definition 6. (Backward Simulation, Fig. 3b) The backward simulation B(𝑝𝑠 , 𝑝𝑡) := is satisfied

if exists a matching relation relation 𝑅𝑚 ∈ 𝑆𝑡𝑎𝑡𝑒 × 𝑆𝑡𝑎𝑡𝑒 between states such that ∀ 𝑆𝑡
1
𝑆𝑡
2
∈

𝑆𝑡𝑎𝑡𝑒𝑠 (𝑝𝑡). ∀𝑆𝑠1 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑝𝑠).∀𝑒 ∈ 𝐸𝑣𝑒𝑛𝑡𝑠.𝑅𝑚 (𝑆𝑠1, 𝑆𝑡1) → 𝑆𝑡
1
{𝑒 𝑆

𝑡
2
→ ∃𝑆𝑠

2
. 𝑆𝑠

1
{𝑒 𝑆

𝑠
2
∧ 𝑅𝑚 (𝑆𝑠2, 𝑆𝑡2)

However, the backward property is usually hard to prove directly. All the previous proof en-

gineering used the trick that proves forward simulation first, which is usually straightforward,

then used a theorem that forward simulation implies backward simulation as long as the compiled

program is deterministic.

Definition 7. (Forward Simulation. 3a) The forward simulation F (𝑝𝑠 , 𝑝𝑡) is defined like flipping

backward simulation as: exists a matching relation 𝑅𝑚 ∈ 𝑆𝑡𝑎𝑡𝑒 × 𝑆𝑡𝑎𝑡𝑒 between states such that

∀ 𝑆𝑠
1
𝑆𝑠
2
∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑝𝑠). ∀𝑆𝑡1 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑝𝑡).∀𝑒 ∈ 𝐸𝑣𝑒𝑛𝑡𝑠.𝑅𝑚 (𝑆𝑠1, 𝑆𝑡1) → 𝑆𝑠

1
{𝑒 𝑆

𝑠
2
→ ∃𝑆𝑡

2
. 𝑆𝑡

1
{𝑒

𝑆𝑡
2
∧ 𝑅𝑚 (𝑆𝑠2, 𝑆𝑡2)

Definition 8. (Determinism) A program 𝑝 is said to be deterministic if for all program state 𝑆 such

that SIp →∗ 𝑆 , there exists at most one program states 𝑆 ′ and event sequence 𝑒 such that 𝑆 {𝑒 𝑆
′

The following lemmas was proved in general theory of the original work of CompCert.

Lemma 1. Forward simulation implies backward simulation if target program is deterministic:

forall program 𝑝𝑠 and 𝑝𝑡 , if 𝑝𝑠 is deterministic and F (𝑝𝑠 , 𝑝𝑡), then B(𝑝𝑠 , 𝑝𝑡)
Lemma 2. Forward simulation is transitive.

Lemma 3. Backward Simulation Implies Behavior Refinement: forall program p, if B(𝑝𝑠 , 𝑝𝑡) then
E(𝑝𝑠) ⊆ E(𝑝𝑡).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:8 Ziteng Yang, Jun Shirako, and Vivek Sarkar

3 Overview of Our Approach
Figure. 4 shows the structure of our system, and how it was incorporated into the CompCert project.

The boxes and arrows in black denote the compiler passes of the original CompCert project. Those

in red denote our extension of instruction scheduling pass and heuristics, accompanied by our

correctness proof in Coq.

CompCert C
Frontend

RTL… LTL

Optimizations

Register
Allocations

Linear Mach Asm
Emission of

assembly code
Laying out the

activation records

Instruction Scheduling

𝑝𝑠 ∈ Linear 𝑝𝑡 ∈ Linear

Graph
Build

Prioritizer

Dependence
Graph 𝐺

Scheduler
(Correct with any heuristics)

Scheduling
Heuristics

Fig. 4. Architecture of our system

Our correctness proof includes the following components, which are discussed in more detail in

the following sections:

(1) Swapping-lemma: A topological reordering of a list of partially ordered elements is equiva-

lent to a finite sequence of swaps of adjacent non-ordered elements. See Fig. 5. A restricted

version of this result was proved in [29]
1
.

(2) Rule of instruction scheduling: Any valid scheduler (or other compiler pass) that reorders

a program’s instructions must obey the dependence constraints of the original program, i.e.,

conduct a toplogical reordering (topo-reorder) based on the dependence relation.

(3) Decompose scheduler: Combining (1) and (2), any valid scheduler (or other compiler pass)

that reorders a program’s instructions within a basic block is equivalent to a finite sequence of

compiler passes that only swap one pair of instructions not ordered by the original program

dependence (a.k.a. independent instructions).

(4) Swapping correctness: Swapping only one pair of adjacent independent instructions inside

only one basic block of a program preserves the semantics of the program.

(5) Transitivity of semantics preservation: if two program transformations preserve program

semantics, composing them also preserves it. Recursively, composing a finite sequence of

semantics-preserving transformation preserves program semantics

(6) Final result: Combining (3) (4) (5), given any instruction scheduler, as long as it preserves

the instruction dependence relations of the original program, it preserves the semantics of

the original program. See Fig. 6

1
This paper proved that there exists a sequence of all permutations of a set that adjacent two permutations only differs on

one pair of adjacent elements was swapped. In our work, the conclusion has a different requirement that only unordered

elements can be swapped.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:9

4 Main Theorem
The structure of our main theorem follows the six steps summarized in Section 3, which are

described in detail in this section. We use formal mathematical notation for lemmas and proofs in

this section that reflect the structure of the proof that we developed using the Coq proof assistant.

4.1 Topological Sort and Topological Re-ordering

Assuming 𝑖 ∈ 𝑁 +, we use 𝑙 [𝑖] to denote the 𝑖th element of a list 𝑙 of elements taken from set 𝐴

(𝑖 <= size of 𝑙 by default), and E𝑙 to denote the set of all elements in 𝑙 . We also assume that there

are no duplicate elements in list 𝑙 .

Definition 9. (Topo-sorted List) Given 𝑙 and a partial order 𝑅 on E𝑙 , a list of elements from E𝑙 is
said to be an topo-sorted list by 𝑅 if ∀𝑖1 𝑖2 ∈ 𝑁 , 𝑅𝑙 [𝑖1]𝑙 [𝑖2] → 𝑖1 < 𝑖2.

Definition 10. (Generated Order by Position) Given a no-duplicate list 𝑙 of elements from some

set 𝐴, a partial order relation 𝑅 on E𝑙 , we define a generated order by position (GOP) of 𝑙 using 𝑅,

denoted by G𝑅
𝑙
, to be: ∀𝑖1 𝑖2 G𝑅

𝑙
𝑙 [𝑖1] 𝑙 [𝑖2] iff 𝑖1 < 𝑖2 ∧ 𝑅 𝑙 [𝑖1] 𝑙 [𝑖2].

Lemma 4. A list is topo-sorted by its own GOP: for any no-duplicate list 𝑙 with length 𝑛 and

relation 𝑅 on 𝐴, 𝑙 is a topo-sorted list G𝑅
𝑙

Proof. Immediately by definition of GOP. □

In later sections, we will see that this abstract definition of GOP represents the data dependence

definition within a basic block. That is, 𝑅 will be instantiated by data dependence definition between

two instructions (RAW/WAR/WAW), and G𝑅
𝑙
will be the dependence relation derived from a whole

basic block (a.k.a happens-before relation inside a basic block).

4.2 Swapping Lemma
We introduce a simple but the most important mathematical property of topological orders used in

this work. It is also one of the core ideas to reduce the verification work’s hardship to only one

complicated but trivial lemma. We name the property swapping lemma. We prove it in a purely

mathematical way independent from the compiler engineering.

This lemma summarizes that, given a topo-sorted list of elements following some order, any

topological reordering of this list is equal to a finite sequence of swapping adjacent unordered

elements. See Fig. 5 for an illustration: all the three swapped pair (𝑖1, 𝑖2), (𝑖3, 𝑖4), (𝑖3, 𝑖5),

𝑖3 𝑖4𝑖1 𝑖5𝑖2

re-order

𝑖3𝑖4𝑖1 𝑖5𝑖2

(a) Some valid topo-reorder of a list of elements

𝑖3 𝑖4𝑖1 𝑖5𝑖2

𝑖3 𝑖4𝑖1 𝑖5𝑖2

𝑖3𝑖4𝑖1 𝑖5𝑖2

𝑖4 𝑖5𝑖1 𝑖3𝑖2

a series of
swapping
attempt

(b) Equivlent transforming

Fig. 5. Illustration of Swapping Lemma

Now we formally define and prove it.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:10 Ziteng Yang, Jun Shirako, and Vivek Sarkar

Definition 11. (Swapping Attempt) Given a set 𝐴, relation 𝑅 on 𝐴, and an topo-sorted list 𝑙 =

[𝑖0, 𝑖1, ..., 𝑖𝑛] by 𝑅 containing a finite number of elements of 𝐴, we say a swapping attempt of 𝑙

at location 𝑘 ∈ 𝑁 , denoted as 𝑙 ′ = 𝑆𝐴𝑅 (𝑙, 𝑘) is a transformation from 𝑙 = [𝑖0, ..., 𝑖𝑘 , 𝑖𝑘+1, ..., 𝑖𝑛]
to 𝑙 ′ = [𝑖0, ..., 𝑖𝑘+1, 𝑖𝑘 , ..., 𝑖𝑛] if 𝑅 𝑖𝑘 𝑖𝑘+1 does not hold or 𝑙 ′ = 𝑙 if 𝑅 𝑖𝑘 𝑖𝑘+1 holds. We also extend

this definition to a list of natural numbers recursively as a sequence of swapping attempts by

𝑆𝐴(𝑙, [𝑛1, 𝑛2, ...]) = 𝑆𝐴𝑅 (𝑆𝐴𝑅 (𝑙, 𝑛1), [𝑛2, ...]).
Definition 12. (Topological reorder) Given a topo-sorted list 𝑙 of elements 𝐴 by 𝑅, another list 𝑙 ′ is
said to be a topo-reorder of 𝑙 iff 𝑙 ′ contains exactly the same elements as 𝑙 and is also topo-sorted

by 𝑅.

Lemma 5. (Swapping Lemma) Given a relation 𝑅, a topo-sorted list 𝑙 , for any 𝑙 ’s topological reorder

𝑙 ′, exists a finite list of nature number 𝑙𝑛 such that 𝑙 ′ = 𝑆𝐴𝑅 (𝑙, 𝑙𝑛)
Proof. This lemma declares that a topological reorder of a list is equivalent to a series of

swappings of adjacent elements. We prove this by induction on the length of 𝑙 . Base case is trivial.

Suppose the conclusion holds for any 𝑙 with 1 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) ≤ 𝑘 , we prove it also holds for any 𝑙∗
that 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙∗) = 𝑘 + 1. Given an 𝑙∗’s topological reorder 𝑙 ′∗ we destruct it by two cases:

• If 𝑙∗ [0] = 𝑙 ′∗ [0], then the remaining parts of these two lists are also a pair of topological

reordering with length 𝑘 , and the conclusion holds by induction hypothesis.

• Otherwise, writing 𝑙 ′∗ = [𝑖0, 𝑖1, ..., 𝑖𝑘+1], 𝑙∗ can be separated into 𝑙1 + +[𝑖0] + +𝑙2. Since 𝑙 ′∗ is
topo-sorted, for any 𝑖 𝑗 in 𝑙1 or 𝑙2, 𝑅𝑖 𝑗𝑖0 does not hold. This means we can get 𝑙 ′′∗ = [𝑖0]++𝑙1++𝑙2
from 𝑙∗ = 𝑙1 + +[𝑖0] + +𝑙2 by swapping 𝑖0 with every elements of 𝑙1 one by one and 𝑙 ′′∗ is still

topo-sorted. Since 𝑙 ′′∗ has the same head and same elements as 𝑙 ′∗, by induction hypothesis,

same as the previous case, 𝑙 ′∗ can be derived from swapping a sequence of adjacent elements

of 𝑙 ′′∗ . Connecting with the previous swapping sequence from 𝑙∗ to 𝑙 ′′∗ , we can construct the

final swapping sequence from 𝑙∗ to 𝑙 ′∗
□

4.3 Rule of Valid Scheduler
We define an instruction scheduler as a transformation on a list of instructions indexed by their

original position at the list so that the list to schedule is always non-duplicate.

Definition 13. (Instruction Scheduler) Given a indexed list of instructions 𝑙 = [𝑖1, 𝑖2, ..., 𝑖𝑛], a
scheduler is a function S : 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 → 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 2

such that 𝑙 and S(𝑙) have exactly
the same elements, i.e. E𝑙 = ES(𝑙) . We also use the same symbol S(𝑝) for scheduler of a whole
program 𝑝

The dependence relation between two instructions depends on their operation to registers and

memory:

Definition 14. (Dependence Relation)D = D𝑅𝐴𝑊

⋃D𝑊𝐴𝑅

⋃D𝑊𝐴𝑊

⋃D𝑠𝑜𝑙𝑖𝑑 where: (i)D𝑅𝐴𝑊 𝑖1𝑖2
iff 𝑤𝑟𝑖𝑡𝑒𝑠 (𝑖1) = 𝑟𝑒𝑎𝑑𝑠 (𝑖2), (ii) D𝑊𝐴𝑅𝑖1𝑖2 iff 𝑟𝑒𝑎𝑑𝑠 (𝑖1) = 𝑤𝑟𝑖𝑡𝑒𝑠 (𝑖2), (ii) D𝑊𝐴𝑊 𝑖1𝑖2 iff 𝑤𝑟𝑖𝑡𝑒𝑠 (𝑖1) =
𝑤𝑟𝑖𝑡𝑒𝑠 (𝑖2), (iv) D𝑠𝑜𝑙𝑖𝑑𝑖1𝑖2 iff one of 𝑖1 and 𝑖2 was a function call or branch jump, or writes to a

memory.

A valid instruction scheduler should always follow this dependence relation at syntax level:

Definition 15. (Valid Instruction Scheduler) An instruction scheduler S is said to be valid if for

any list of instructions 𝑙 , S(𝑙) is a topo-reorder of 𝑙 by GD
𝑙
.

2
The index was omitted from the scheduler’s type for simplification.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:11

…

𝑙 𝑙

Lemma 7.

Lemma 7.

⊑

…
 ⇔

…

Lemma 7.

Lemma 2,
transitivity

Of

⋈

⋈ : forward simulation

⋈

⋈

⋈

⋈

: swapping attempt

: composing scheduler

Fig. 6. Structure of our proofs

4.4 Equivalence of Valid Schedulers
Definition 16. (Single Swapper) A single swapper S𝑛𝑠 where 𝑛 ∈ 𝑁 is a special kind of instruction

scheduler that only tries to swap one pair of adjacent instructions with a parameter to specify the

swapping location defined inductively: (i) S𝑛𝑠 ([]) = [] for any 𝑛 ∈ 𝑁 , (ii)S𝑛+1𝑠 (𝑖 :: 𝑙) = 𝑖 :: S𝑛𝑠 (𝑙),
(iii)S0

𝑠 (𝑖𝑖 :: 𝑖2 :: 𝑙) = 𝑖2 :: 𝑖1 :: 𝑙) if not D𝑖1𝑖2, (iv) S0

𝑠 (𝑖𝑖 :: 𝑖2 :: 𝑙) = 𝑖1 :: 𝑖2 :: 𝑙 if D𝑖1𝑖2.

We also use the same symbol S𝑛𝑠 (𝑓 , 𝑝) to denote swapping a single pair in side code blocks of

the function 𝑓 in a program 𝑝

Definition 17. (Composing Scheduler) Given a list of scheduler 𝐿S = [S1,S2, . . . ,S𝑛], we directly
use 𝐿𝑆 as the function by composing the scheduler in it one by one, i.e. 𝐿S (𝑙) = S𝑛 (S𝑛−1 (...S1 (𝑙)))

Now we can conclude that a valid scheduler is equal to a composing of a sequence of single

swappers.

Lemma 6. (decomposing lemma) Given a valid scheduler S, there exists 𝐿S = [S𝑖1𝑠 , . . . ,S𝑖𝑛𝑠] such
that for any 𝑙 , S(𝑙) = 𝐿S (𝑙).

Proof. According to the definition of valid scheduler, since both 𝑙 and S(𝑙) are sorted by GD
𝑙
,

this property is proved by swapping lemma. □

4.5 Swapping Correctness and the Final Theorem
We have proved in Coq that swapping a single pair of adjacent independent instructions still

preserves the forward simulation relation of the program.

Lemma 7. (correctness of single swapper) Given a single swapper S𝑛𝑠 of a program, F (𝑝,S𝑛𝑠 (𝑝)).

Lemma 7 is the only lemma that requires us to reason about the different cases of semantic

details of IR execution. Briefly, we have to reason case by case that executing two independent

instructions consecutively results in the same memory and register states no matter which one

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:12 Ziteng Yang, Jun Shirako, and Vivek Sarkar

was executed first. Till here, we have shown how breaking a scheduler down to single swappers

made the verification of a scheduler easier.

Together with Lemma 6 and 2, we can prove that any valid scheduler of a program preserves the

forward simulation relation, thus can be incorporated into the original CompCert system.

Lemma 8. For any valid instruction scheduler S of a program 𝑝 , F (𝑝,S(𝑝)).
The proof procedure of Lemma 8 is described in Fig. 6.

5 Correctness of List Scheduling
We show how our framework works when proving a concrete instruction scheduling algorithm

in this section, i.e., list scheduling (one of the simplest intra-block scheduling algorithms). As

mentioned in Section 1.2, no previous work had ever achieved a formally verified compiler pass for

list scheduling, even for such a simple algorithm. For list scheduling, the work from [44, 48] used

verified translation validation to check the validity each time a program is compiled.

The scheduling algorithm that we focus on in this proof consists of three parts: dependence

graph, scheduling heuristics, and iterative scheduling. With our previous theorem, we only have to

prove that our algorithm is a valid scheduler. This proof will no longer involve semantics details

since the definition of a correct schedule is only based on the dependence relation, D, defined at

the syntax level.

Our algorithm was implemented and proved in Coq and can be directly used by the CompCert

project.

5.1 Dependence Graph Construction and Scheduling Heuristics
Scheduling a block of instructions requires us to construct a dependence graph that records the

dependence relation inside a basic block. This step is noted in Algorithm. 1.

Algorithm 1 Dependence Graph Generating: 𝐷𝑅𝑒𝑙 (𝑙)
Require: List of instructions 𝑙 = [𝑖1, 𝑖2, ..., 𝑖𝑛] ⊲ Non-duplicate by giving index to them

Ensure: Graph G that records GD
𝑙
, the generated order of 𝑙 by D ⊲ Proved in Section.5.3

if 𝑙 = 𝑛𝑖𝑙 then
G.𝑛𝑜𝑑𝑒𝑠 ← E𝑙
G.𝑒𝑑𝑔𝑒𝑠 ← ∅

else if 𝑙 = 𝑖′ :: 𝑙 ′ then
G.𝑒𝑑𝑔𝑒𝑠 ← G.𝑒𝑑𝑔𝑒𝑠 ∪ {(𝑖′, 𝑖) |𝑖 ∈ 𝑙 ′ ∧ D𝑖′𝑖}
G.𝑒𝑑𝑔𝑒𝑠 ← G.𝑒𝑑𝑔𝑒𝑠 ∪ 𝐷𝑅𝑒𝑙 (𝑙 ′).𝑒𝑑𝑔𝑒𝑠

end if

After building the dependence graph, our scheduling algorithm will need a heuristic (oracle) to

make choices among several available instructions to be scheduled during each step in iterative

scheduling. The heuristic (also named prioritizer in our implementation) we use is an abstract

parameter P : 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 → 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛. In the actual implementation, it takes the

original basic block as input, and returns the priority of each instruction based on analyzing

some performance aspects (e.g., specific architectures, clock time of instruction types, etc). In each

iteration, our scheduler will pick an instruction with the highest priority.

The details of heuristics do not influence the correctness of the scheduling algorithm, but only

the performance of scheduled code. That means no matter how unreasonable the priority function

is, the scheduled code should be correct in semantics. Therefore, we do not introduce a concrete

heuristic in this section but leave that to our final instantiation during experiments in Section 7.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:13

5.2 Scheduling Algorithm
The list scheduling algorithm we are going to prove correctness for (Algorithm. 2) is an iterative

processing algorithm on the dependence graph. It has exactly the same number of iterations as the

length of the instruction list (basic block). Each iteration identifies all nodes that do not depend on

any other nodes, and picks one according to the priority from the input heuristics.

Algorithm 2 List Scheduling S∗ (P, 𝑙)
Require: A heuristic function P : 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 → 𝑙𝑖𝑠𝑡 𝑁

Require: List instructions 𝑙 = [𝑖1, 𝑖2, ..., 𝑖𝑛] ⊲ Non-duplicate by giving index to them

Ensure: 𝑙∗ is a topo-reorder of 𝑙 by GD
𝑙

⊲ Proved in Section.5.3

G← 𝐷𝑅𝑒𝑙 (𝑙)
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← P(𝑙) ⊲ P(𝑙) (𝑘) will be the priority of 𝑖𝑘
𝑙∗ ← []
while G not empty do

A← {𝑖𝑘 ∈ 𝑙 |∀𝑖𝑘 ′ ∈ 𝑙 .(𝑖𝑘 ′ , 𝑖𝑘) ∉ G}
𝑖𝑘∗ ← 𝑖𝑘∗ ∈ A such that 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 [𝑘∗] 𝑖𝑠 𝑚𝑎𝑥
𝑙∗ ← 𝑙∗ + +[𝑖𝑘∗]
G← remove node 𝑖𝑘∗ from G

end while
return 𝑙∗

5.3 Proving Correctness
Now we prove that for any scheduling heuristic P, our list scheduler S∗ (P) is correct. Based on

Lemma 8, all we need to do is to prove S∗ (P) is a valid scheduler, a.k.a. S∗ (P, 𝑙) will generate an
𝑙 ′ that is a topo-reorder of 𝑙 by the generated order from 𝑙 . To achieve this, we first prove that the

dependence graph represents GD
𝑙

correctly. Then we prove that an invariant was preserved during

the iterative scheduling process.

5.3.1 Graph Construction. We firstly proved that the graph we constructed from given 𝑙 using

Algorithm. 1 correctly stores the relation of GD
𝑙
.

Lemma 9. Given a list of instruction 𝑙 = [𝑖1, 𝑖2, ...], ∀𝑖 𝑗 , 𝑖𝑘 ∈ 𝐷𝑅𝑒𝑙 (𝑙).𝑒𝑑𝑔𝑒𝑠 we have GD𝑙 𝑖 𝑗𝑖𝑘 .

5.3.2 Scheduling Invariant: In the loop inside Algorithm 2, we proposed the following invariant:

Definition 18. (Scheduling Invariant) The invariant during the iterative scheduling process consists
of the following assertions:

• LENGTH: |𝑙∗ | + |G.𝑛𝑜𝑑𝑒 | = |𝑙 |
• SUBSET: G.𝑛𝑜𝑑𝑒𝑠 ∈ E𝑙 ∧ E𝑙∗ ∈ E𝑙
• INTERSECTION: G.𝑛𝑜𝑑𝑒 ∩ E𝑙 = ∅
• NGT: ∀𝑖 𝑗 ∈ E𝑙 , 𝑖𝑘 ∈ 𝐺 , (𝑖𝑘 , 𝑖 𝑗) ∉ 𝐷𝑅𝑒𝑙 (𝑙).𝑒𝑑𝑔𝑒𝑠
• SORT: 𝑙∗ is sorted by GD

𝑙

We prove that this invariant is preserved during scheduling:

Lemma 10. (Invariant Preservation) The invariant in Definition 18 was preserved in the loop

inside Algorithm 2.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:14 Ziteng Yang, Jun Shirako, and Vivek Sarkar

Proof.

• LENGTH, SUBSET, and INTERSECTION: One node was removed from G to the tail of 𝑙∗

in each iteration

• NGT: let the new graph be𝐺 ′ after removing 𝑖𝑘∗ from it. For any 𝑖 𝑗 ∈ E𝑙++[𝑖𝑘∗] , if 𝑖 𝑗 = 𝑖𝑘∗ , since
𝑖𝑘∗ ∈ 𝐺.𝑛𝑜𝑑𝑒 was the one with no incoming edges, this invariant was still preserved since

∀𝑖𝑘 ∈ 𝐺 ′, (𝑖𝑘 , 𝑖𝑘∗) ∉ 𝐷𝑅𝑒𝑙 (𝑙).𝑒𝑑𝑔𝑒𝑠 . Otherwise if 𝑖 𝑗 ∈ E𝑙 , this invariant was also preserved

immediately.

• SORT: by combining NGT and Lemma 9.

□

Now, we establish the property that the scheduled instructions have the same elements as before

our schedule:

Lemma 11. For any scheduling heuristic P, given an 𝑙 and 𝑙 ′ = S∗ (P, 𝑙), E𝑙 = E𝑙 ′

Proof. In iterative scheduling, one instruction was removed from G to the tail of 𝑙∗ in each

iteration until G becomes empty. □

5.3.3 Validity: Now we can immediately reach the conclusion that our algorithm is a valid sched-

uler.

Lemma 12. Given a list of instruction 𝑙 and scheduling heuristic P, S∗ (P, 𝑙) is a topo-reorder of 𝑙
by GD

𝑙
i.e. Algorithm 2. provides a valid scheduler.

Proof. Combining Lemma 11. and SORT of the preserved invariant after scheduling. □

5.3.4 Final Correctness: With the conclusion from Section.4, our algorithm preserves the forward

simulation relation of a program.

Theorem 1. Scheduler in Algorithm 2 preserved the forward simulation relation of program

semantics regardless of scheduling heuristic: for any program 𝑝 and heuristic P, F (𝑝,S∗ (P, 𝑝)).

Proof. Immediately, by combining Lemma 8 and Lemma 12. □

Incorporating this theorem into original CompCert theories, our new compiler still preserves

the backward simulation between source C program and compiled Asm program.

6 Framework Implementations in Coq Proof Assistant
This section describes some essential details of the formalization of our theory in Coq. The establish-

ment of formal Coq theorems follows the same route as the paper-written mathematical theorems

Section 4 and 5. However, the detail of implementation involves much more trivial definitions or

parameters. For example, to distinguish repeated same instructions, we have to give an index to

each instruction in a list so the the list we are scheduling becomes non-duplicate.

Context {A: Type}.

Fixpoint numlistgen' (l: list A) (n: positive): list (positive * A) :=
match l with
| [] => []
| x :: l' => (n, x) :: numlistgen' l' (n + 1)
end.

Definition numlistgen (l: list A) := numlistgen' l 1.
...
Lemma numlistgen_NoDup: forall l, NoDup (numlistgen l).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:15

6.1 Formalization of Topological Properties and Swapping Lemma
6.1.1 topo-sorted and topo-reorder. Given a relation 𝑅 on some type 𝐴, the topo-sorted property

and topo-reorder relation on list of 𝐴 is defined inductively:

Context {A: Type}.
Variable R: A -> A -> Prop.

(* not greater than any elements in list *)
Inductive NoDupSame: list A -> list A -> Prop :=
| NoDupSame_intro:

forall l1 l2, NoDup l1 -> NoDup l2 -> incl l1 l2 -> incl l2 l1 -> NoDupSame l1 l2.

Inductive ngt (a: A): list A -> Prop :=
| ngt_nil: ngt a []
| ngt_cons: forall x l, ngt a l -> ~ R x a -> ngt a (x :: l).

Inductive topo_sorted: list A -> Prop :=
| topo_sorted_nil: topo_sorted []
| topo_sorted_cons: forall x l, ngt x l -> topo_sorted l -> topo_sorted (x :: l).

Inductive topo_reorder : list A -> list A -> Prop :=
| topo_reorder_nil: topo_reorder [] []
| topo_reorder_skip x l l' : ngt x l -> topo_reorder l l' -> topo_reorder (x::l) (x::l')
| topo_reorder_swap x y l : (~ R x y) -> (~ R y x) -> topo_reorder (y::x::l) (x::y::l)
| topo_reorder_trans l l' l'' :
topo_reorder l l' -> topo_reorder l' l'' -> topo_reorder l l''.

Note that the topo-reorder we defined in Coq is an alternative but equal form of the one we

defined in Definition 12. This makes our proof of swapping lemma more convenient since the

constructor already contains the ‘swapping’.

The induction on the length of the list was conducted in the following lemmas and theorem.

Note that this proof actually corresponds to the proof of swapping lemma in Lemma 5 due to the

alternative definition of topo-reorder.

Lemma sorted_same_elements_topo_reorder_ind:
forall n,

(forall k l1 l2, k < n -> length l1 = k -> NoDupSame l1 l2 ->
topo_sorted l1 -> topo_sorted l2 -> topo_reorder l1 l2) ->

(forall l1 l2, length l1 = n -> NoDupSame l1 l2 ->
topo_sorted l1 -> topo_sorted l2 -> topo_reorder l1 l2) .

Lemma sorted_same_elements_topo_reorder':
forall n l1 l2, length l1 = n -> NoDupSame l1 l2 ->

topo_sorted l1 -> topo_sorted l2 -> topo_reorder l1 l2.

Theorem sorted_same_elements_topo_reorder:
forall l1 l2, NoDupSame l1 l2 ->

topo_sorted l1 -> topo_sorted l2 -> topo_reorder l1 l2.

6.1.2 swapping lemma. Now we can show how the final theorem of the swapping lemma was

formalized in Coq.

The swapping attempt (Definition 11) was formalized by

Context {A: Type}.
Variable (rel: A -> A -> bool).
(* swapping attempt at location n *)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:16 Ziteng Yang, Jun Shirako, and Vivek Sarkar

Fixpoint try_swap (n: nat) (l: list A): list A :=
match n, l with
| _, nil => nil | _, i :: nil => l (* None: do not swap *)
| O, i1 :: i2 :: l' => if rel i1 i2 then l

else (i2 :: i1 :: l')
| Datatypes.S n', i :: l' => i :: try_swap n' l'
end.

(* a sequence of swapping attempts *)
Fixpoint try_swap_seq (ln: list nat) (la: list A): list A :=

match ln with
| nil => la
| n :: ln' => try_swap_seq ln' (try_swap n la)
end.

Then the final swapping lemma was formalized by

Context {A: Type}.
Variable Rb: A -> A -> bool.

Theorem swapping_property:
forall l nl', (treorder R l) (numlistgen l) nl' ->
exists ln, nl' = try_swap_seq Rbnum ln (numlistgen l).

6.1.3 Generated order by position. The actual order of a basic block comes from both their original

position and their dependence relation to others. In Coq, D in Definition 10 was formalized as

(* Generated order by position from a list, aux. definition for simpler proofs *)
Inductive GenR' (i: positive) (na1 na2: positive * A): Prop :=

GenR_intro: List.In na1 (numlistgen' l i) -> List.In na2 (numlistgen' l i) ->
fst na1 < fst na2 -> R (snd na1) (snd na2) -> GenR' i na1 na2.

(* Generated order by position from a list *)
Definition GenR := GenR' 1.

6.2 Forward Simulation Preservation of Abstract Scheduler
Before showing the final lemma of the correctness of single swapper, we wish to show the only

lemma that involves the semantics details of the Linear IR we work on and contributes to most of

the proof burden of this work. This is the core lemma of proving that the single swapper preserves

the forward simulation of the IR (Lemma. 7).

Lemma independent_two_step_match:
forall stk stk' f f' sp sp' c rs rs' m m' s3 i1 i2 t
(INDEP: i1 D~> i2 = false)
(s1:= State stk f sp (i1::i2::c) rs m)
(STEP13: starN step ge 2 s1 t s3)
(s1':= State stk' f' sp' (i2::i1::c) rs' m')
(MAT: match_states s1 s1'),

exists s3', tPlus s1' t s3' /\ match_states s3 s3'.

The detailed definition of the program state of Linear IR and forward simulation relation can be

refered at [14]. After that, then the semantics preservation of the single swapper was formalized by

Fixpoint transf_program_try_swap_seq1 (seq: list (nat * nat)) (prog: program):=
match seq with
| [] => OK prog
| (pos, n) :: seq' => do prog' <- transf_program_try_swap_in_one pos n prog;

transf_program_try_swap_seq1 seq' prog'
end.

Lemma transf_program_multi_swap_forward_simulation1:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:17

forall seq prog tprog,
transf_program_try_swap_seq1 seq prog = OK tprog ->
forward_simulation (Linear.semantics prog) (Linear.semantics tprog).

The abstract scheduler is defined to have a parameter of function type from a list of indexed

instruction to another list of indexed instructions, with a hypothesis that the result of it gener-

ated a topo-reorder. Here the happens_before corresponds to the data dependence relation D in

Definition 14

Variable schedule': list (positive * instruction) -> res (list (positive * instruction)).

Let HBR := fun i1 i2 => happens_before i1 i2 = true.
Let HBnum (na1 na2: positive * instruction) := happens_before (snd na1) (snd na2).
Let HBGenR (l: list instruction) := GenR HBR l.

Hypothesis schedule_valid:
forall l nl', schedule' (numlistgen l) = OK nl' ->

treorder HBR l (numlistgen l) nl'.

Definition schedule_program (p: program): res program := ... (* based on schedule' *)

Theorem schedule_program_forward_simulation:
forall prog tprog: program, schedule_program prog = OK tprog ->

forward_simulation (Linear.semantics prog) (Linear.semantics tprog).

6.3 Case Implementation on List Scheduling and Correctness
The implementation of our scheduler takes a heuristic function as an abstract parameter and builds

a lookup table indexed by the location of each instruction based on it.

Variable prioritizer: list instruction -> list positive.
Fixpoint prio_map' (cur: positive) (lp: list positive): PMap.t positive :=

match lp with
| nil => PMap.init 1
| p :: lp' => PMap.set cur p (prio_map' (cur + 1) lp')
end.

Definition prio_map (lp: list positive) := prio_map' 1 lp.
...
(* return the one to schedule and the new dependence graph after removing it *)
Definition schedule_1 (prior: PMap.t positive) (original: DPMap_t)
(scheduled: list (positive * instruction)) (remain: DPMap_t)
: res (list (positive * instruction) * DPMap_t) :=

let available := indep_nodes remain in
do pi <- firstpick prior available;
OK (scheduled ++ [pi], remove_node (fst pi) remain).

Fixpoint schedule_n (prior: PMap.t positive) (L: nat) (original: DPMap_t)
(scheduled: list (positive * instruction)) (remain: DPMap_t)
: res (list (positive * instruction) * DPMap_t) :=

match L with
| O => OK (scheduled, remain)
| Datatypes.S L' =>

do (scheduled', remain') <- schedule_1 prior original scheduled remain;
schedule_n prior L' original scheduled' remain'

end.

Definition schedule_numblock (nl: list (positive * instruction)) :=
let m := dep_map_gen nl in (* dependence graph *)
let prior := prio_map (prioritizer (numlistoff nl)) in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:18 Ziteng Yang, Jun Shirako, and Vivek Sarkar

do (nl', m) <- schedule_n prior (List.length nl) m [] m;
OK nl'.

Definition list_schedule' := schedule_program schedule_numblock.

The list scheduler with arbitrary prioritizer is proven to preserve the forward simulation of

Linear IR through the invariant we used in Lemma 10.

Lemma schedule_numblock_correct:
forall l nl', schedule_numblock (numlistgen l) = OK nl' ->

treorder HBR l (numlistgen l) nl'.

Theorem abstract_list_schedule_forward_simulation:
forall prog tprog, list_schedule' prog = OK tprog ->
forward_simulation (Linear.semantics prog) (Linear.semantics tprog).

Proof.
intros. eapply schedule_program_forward_simulation; eauto.
eapply schedule_numblock_correct.

Qed.

7 Scheduling Heuristics Implementation for Specified Architecture
In this section, we show how we implement the scheduling heuristic for our target RISC-V Machine.

Although it is feasible to completely implement everything in Coq and generate the improved

compiler, we chose to use a trick that makes it possible for developers who do not have knowledge

of Coq/OCaml systems to collaborate with us. We believe this further improves the flexibility of

our result.

The design of CompCert works in the following way. The compiler passes were both implemented

and proved in Coq. To make it an executable file that works the same way as GCC or Clang, it uses

the Extraction function of Coq to convert the composition of those passes into an Ocaml function

of type 𝐶 𝑠𝑦𝑛𝑡𝑎𝑥 → 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑐𝑜𝑑𝑒 (the principle of Extraction can be found at the Coq textbook

[3], chapter Extract). Note that such conversion from Coq to OCaml is not guaranteed safe, which

is the well-known trusted computing base of CompCert.

As we mentioned, the scheduling heuristic is abstracted away in algorithm implementation as

a parameter of type 𝑙𝑖𝑠𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 → 𝑙𝑖𝑠𝑡 𝑁 . Therefore, instead of implementing it in Coq and

then extract to OCaml, we can safely implement it directly in OCaml. We have learned that the

OCaml language supports interfacing C with itself [34, 47]. We use this support in our OCaml

function to invoke a C function that customizes the scheduling priority towards Risc-V. The reason

we doing this instead of continuing the implementation in Coq and build the compiler in previous

way is that we believe this both reduces the learning process of compiler engineers who are not

familiar enough with Coq/OCaml development and proof engineers who are not familiar enough

with specific machine architectures.

Nevertheless, using such a method is not necessary but just an option. Future developers that use

our result to improve the performance of instruction scheduling can freely choose to modify the C

function under the same interface, modify under the OCaml function without using C interface,

or modify under the Coq scheduler without using abstract parameters but a concrete heuristic

implemented in Coq. Any of the above choices will not change any of the proof codes.

7.1 Critical Path Scheduling
As our instruction scheduling heuristics, we use the Critical Path (CP) method [12, 28], where

the instruction with the longest path length has the highest priority. Given a dependence graph

whose node represents an instruction and an edge represents inter-instruction dependence, the

path length of 𝑛𝑜𝑑𝑒𝑖 to the exit node is computed as:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:19

𝑝𝑎𝑡ℎ𝑖 =𝑚𝑎𝑥 𝑗∈𝑠𝑢𝑐𝑐𝑖 (𝑝𝑎𝑡ℎ 𝑗) + 𝑐𝑜𝑠𝑡𝑖
where 𝑠𝑢𝑐𝑐𝑖 is the dependence successors of 𝑛𝑜𝑑𝑒𝑖 , 𝑐𝑜𝑠𝑡𝑖 is the instruction latency of 𝑛𝑜𝑑𝑒𝑖 , and exit

node is the zero-cost dummy node that precedes all other nodes. Our target machine used for the

performance study in Section 8.2 is SiFive U74-MC Core Complex. We collected the instruction

latencies from their architecture manual [49] and summarized them as a cost table, i.e., a map of

operator type to corresponding latency.

The CP method is a fast and efficient heuristic scheduling algorithm, which can enhance

instruction-level parallelism and achieve near-optimal scheduling results in practice. Our cer-

tified instruction scheduling uses the above path length as the priority among available instructions

(Section 5.2).

7.2 Interaction between Coq/OCaml and C function
7.2.1 Coq-OCaml Interface. In the Coq part, we need a parameter to represent the outside world

function from OCaml:

Require Import ExtrOcamlIntConv.
Parameter prioritizer : list int -> int -> list (list int) -> int -> (list int).
...
(* definition of encoding of instruction to an integer *)
...
Definition prioritizer' (l: list instruction): list positive :=

let nodes := block2ids l in
let edges := nblock2edges (numlistgen l) in
let prior' := prioritizer nodes (int_of_nat (length nodes))

edges (int_of_nat (length edges)) in
List.map pos_of_int prior'.

The prioritize function that is manually implemented in OCaml takes the parameters of a list of

nodes encoding the instruction’s operation type and edges of the same dependence graph from

which the scheduling algorithm is processing. It further passed the parameters to invoke the C

functions that implement the CP heuristic using the Ctypes
3
library (mentioned in Chapter 22 of

[34]) , and get a list of integers that represent the priority of each node.

open Ctypes
(* The prioritizer function in OCaml *)
let prioritizer nodes n edges m: int list =
(* First, we will need to convert them to C arrays *)
let nodes_arr = CArray.of_list int nodes in
let edges_arr =

let inner = List.map (fun e -> CArray.of_list int e |> CArray.start) edges in
let outer = CArray.of_list (ptr int) inner in outer

in
(* Now, we pass arguments into prioritizer *)
let result =

C.Functions.prioritizer (CArray.start nodes_arr) n (CArray.start edges_arr) m
in
CArray.from_ptr result n |> CArray.to_list

7.2.2 OCaml-C interface. We then implemented the following C function to compute the path-

based priority discussed in Section 7.1, where nodes and edges respectively capture operator

3
This library of OCaml has a name conflict with a module in CompCert. We have to change the name of that module when

implementing the heuristic in this way

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:20 Ziteng Yang, Jun Shirako, and Vivek Sarkar

types and dependence edges while the return value represents the computed priorities for given

nodes:

int *prioritizer(int *nodes, int n, int **edges, int m);

8 Evaluation
We evaluate our result in two different views: proof workload of our verification and optimization

performance of our implementation case of list scheduling with critical path scheduling heuristics.

We will show that our proofs have acceptable length and are comparably as lightweight as previous

work in lines of codes (LOC) with the same coding style as the open source code of CompCert.

We will also show that our implementation case results in an improved compiler optimization on

benchmarks.

8.1 View 1: Proof Engineering
We believe our verification work is relatively lightweight in two aspects. Firstly, we used a similar

amount of LOC on proofs as in previous work on validating intra-block scheduling. Secondly, 75%

of our work are once-for-all result. We believe future work on different scheduling algorithms

inside a basic block can directly use our result to finish proof without any reasoning on semantics

details again, i.e. we also make future work lightweight.

Table. 1 shows the proof workload of our verification work on instruction scheduling.

Table 1. LOC of program/functions and proofs in our work

Language Functions Proofs

Base theories on topo-reorder’s properties (once-for-all) Coq - 0.8k

Base theories on semantics (once-for-all) Coq - 2.2k

List-scheduling algorithm (excluding heuristics) Coq 0.15k 1.0k

Scheduling heuristics OCaml 25 -

Scheduling heuristics C 0.7k -

Machine dependent code (Risc-V) Coq - 40

Machine dependent code (x86) Coq - 35

Table. 2 shows proof workload of both our and previous work. Note that the total goal of the

three work are not exactly the same: [48] also implemented a validator for trace scheduling and

[44] did some specific work to support VLIW instruction parallelism, while our work verified a

machine-independent scheduling algorithm with machine dependent heuristics. A remark is that

our work has a stronger result, i.e. correctness of an algorithm. Both the work of [44, 48] only

guarantees the correctness of the translation validator, a.k.a guarantees the correctness of each

compiled case that does not return an error message. With only a verified translation validator, the

compilation will be aborted if the unverified scheduler generates a wrong result.

Table 2. LOC of related work

Fully verified Scope LOC of proof codes

This work Yes list scheduling 4k

[48] No list and trace scheduling 11k

[44] No list scheduling (VLIW) 18k+10k(architecture)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:21

In the view of flexibility, the methods of verified translation validation are naturally 100% flexible.

That means different scheduling algorithms can share the same verified validator, there’s no proof

cost to change when changing a scheduler, but only the codes of the scheduler itself. Nevertheless,

our result shows that in the goal of a fully verified scheduling algorithm, 75% of the proof codes

are fixed, both algorithm-independent and machine-independent. Bringing a list scheduler with a

different algorithm only influences the remaining proofs. If we treat our list scheduling as some

new work that imports our basic theory as a library, the proof-code LOC ratio is around 1:10,

approximating the average ratio at the current age of program verification technology.

8.2 View 2: Effect of Optimization
We used a SiFive U74-MC Core Complex as our experimental platform. The U74-MC Core Complex

includes four 64-bit U7 RISC-V cores, each of which has a dual-issue, in-order execution pipeline,

with a peak execution rate of two instructions per clock cycle. Each U7 core supports standard

Multiply, Single-Precision Floating Point, Double-Precision Floating Point, Atomic, Compressed,

and Bit Manipulation RISC-V extensions (RV64GCB) [49]. As our experimental benchmark, we

used PolyBench C 4.2 [40], a widely used benchmark suite for compiler evaluations. The PolyBench

has 30 numerical benchmarks, extracted from a variety of application domains including linear

algebra computations, image processing, physics simulation, dynamic programming, statistics, and

stencil computations. As the reference implementation, we used the latest version of CompCert

3.13.1 available from the official website [14].

Im
pr

ov
em

en
t o

ve
r C

om
pC

er
t 3

.1
3.

1

0

0.5

1

1.5

2

2m
m

3m
m ad

i
ata

x
bicg

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

deri
ch

e

doit
ge

n
durb

in

fdtd-2d

flo
yd

-w
ars

ha
ll

ge
mm

ge
mve

r

ge
su

mmv

gra
msc

hm
idt

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d

lud
cm

p lu mvt

nu
ssi

no
v

se
idel-

2d
sym

m
syr

2k syr
k

tris
olv

trm
m

ge
o.

mea
n

1.17

0.98
1.06

1.40
1.291.29

1.011.06

1.291.26

1.09
1.021.01

1.18
1.091.111.14

1.34

1.121.09
1.19

1.81

1.03

1.361.371.34

1.151.17
1.111.081.11

Fig. 7. Performance improvements by the certified instruction scheduler for PolyBench C 4.2

Figure 7 shows the improvement factors of the PolyBench execution performance by our proposed

approach, compared to the reference implementation CompCert 3.13.1. To evaluate the impacts of

instruction scheduling combined with source-level program optimizations, we applied the PLUTO

polyhedral source-to-source compiler [8] to generate the optimized source programs that were

used for both the reference version and our version. After the loop transformations including

multi-level loop unrolling, the kernel basic blocks (i.e., the innermost loop bodies) have a huge

amount of instructions and thereby efficient instruction-level scheduling is the key to enhance

the overall execution performance. As shown in Figure 7, our certified instruction scheduler

enhanced the performance for most benchmarks, with the geometric mean of 1.17× and up to 1.81×
improvements. By comparing the outputs of all 30 benchmarks, we verified that the equivalent

outputs were generated: 1) between the reference version and our version; and 2) between enabling

and disabling the PLUTO source-to-source compilation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:22 Ziteng Yang, Jun Shirako, and Vivek Sarkar

To see the impact of source-level program optimizations, we also collected the runtime per-

formance numbers when disabling source-to-source polyhedral optimizer. In this case, especially

without loop unrolling for parallel loops, the instruction-level parallelism is quite limited for most

benchmarks and hence there are few opportunities to reorder instructions. As expected, we could

not see notable differences in the scheduling results between the baseline CompCert and our

proposed instruction scheduler, with the geometric mean speedup of 1.04.

N
or

m
al

ize
d

tim
e

to
 C

om
pC

er
t 3

.1
3.

1

0

5

10

15

20

25

30

2m
m

3m
m ad

i
ata

x
bicg

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

deri
ch

e

doit
ge

n
durb

in

fdtd-2d

flo
yd

-w
ars

ha
ll

ge
mm

ge
mve

r

ge
su

mmv

gra
msc

hm
idt

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d

lud
cm

p lu mvt

nu
ssi

no
v

se
idel-

2d
sym

m
syr

2k syr
k

tris
olv

trm
m

ge
o.

mea
n

2.672.281.781.991.83
3.55

5.09
6.32

1.22

3.46
4.40

3.07
2.01

5.28

3.02
2.121.531.581.39

3.21
1.691.81

2.73
3.85

5.51

3.23
1.951.93

3.08
3.983.34

9.189.03
7.137.567.00

12.34

20.76

26.58

3.38

12.82

16.96

9.289.51
7.84

12.54

7.32

5.025.52
4.47

10.87

5.236.03

9.56

12.65

16.88

13.67

6.686.70

9.25

12.0211.88

Untrusted scheduler (kvx) Trusted scheduler (ours)

Fig. 8. Normalized compilation times for untrusted KVX scheduler and proposed trusted scheduler, relative
to the baseline CompCert 3.13 for PolyBench C 4.2

Figure 8 shows the normalized compilation times to CompCert 3.13.1 for PolyBench kernels using

both the proposed certified instruction scheduling pass and the CompCert with scheduler using

certified translation validation from [44] (CompCert-KVX). Compared to the original CompCert

without the proposed scheduling pass, the normalized compilation times enabling the certified

instruction scheduler are between 1.22 (mvt) and 6.32 (nussinov). Our trusted scheduler is also

around 3x - 4x faster than CompCert-KVX. We also observed that the absolute compilation times

are correlated to the kernel code sizes of benchmarks while there is not strong correlation between

the normalized compilation time and kernel code size, i.e. the slowdown of compile time does not

depend on the kernel size.

A remark here is CompCert-KVX used different scheduler implementations and heuristics and

was implemented directly in OCaml. Nevertheless, in a theoretical view, the compile time overhead

of a trusted scheduler in our method has to be strictly less than the untrusted scheduler with

the same scheduling pass plus a validating process, whether implemented directly in OCaml or

implemented in Coq then extracted to OCaml. Our work just ensures that the validating process can

be deleted safely. However, if the untrusted scheduler was implemented in different OCaml codes,

it could be possibly faster by using some imperative features, even if it will have extra validating

time.

9 Conclusion
9.1 Trusted Computing Base (TCB)
As we mentioned in Section 7, the CompCert project was implemented as a Coq function from

C code to assembly code. It will be extracted to OCaml codes to be further compiled into an

executable file. The whole verification work only guarantees the correctness of the Coq function.

The TCB of the CompCert project trusts the automatic conversion from the Coq functions to the

OCaml functions. The TCB of our base theory is the same as the original CompCert. However, in

our implementation case using an engineering trick (not mandatory), the implementation of list

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

Fully Verified Instruction Scheduling 299:23

scheduling and experiments is slightly different and increased the TCB since the abstract function

in Coq was instantiated directly in the OCaml function instead of directly coding it in Coq and

it uses OCaml’s interface with C language. Doing this adds two more components to the trusted

computing base: the reliability of this interface and the convention between Coq natural number

and OCaml integers.

As we explained in Section 7 this is not unavoidable but just a better option. We only do it in

this way to show how flexible our results can be. It is completely feasible to implement everything

of the scheduling heuristics in our case study and experiments in Coq and generate OCaml codes

like the original CompCert did, though it requires much more workload for both compiler-backend

engineers and proof engineers. Our method makes it possible for compiler engineers to improve

the CompCert project without knowing the detailed technology of Coq development.

9.2 Inspiration on Reducing Verification Burden
As a common sense in program verification, the price of a bug-free program is heavy work on

proof engineering. In semi-automatic verification methods like Coq proof assistant, the usual idea

to reduce the proof workload is using some proof automation tricks. One example are Ltac tactic

language embedded in Coq [16, 38].

In the verified translation validation work of [44, 48], the whole scheduling algorithm to be

validated can be treated as an uninterpreted parameter since the verified validator will check the

correctness result of each translation itself. Similarly, an inspiration we can get from our work is to

abstract away components of an algorithm that do not influence correctness but only influence

the performance, by abstracting it into a parameter in proof to reduce unnecessary proof code.

One example can be the scheduling heuristics during scheduling choice. Another example is the

machine architecture: since we implemented the algorithm on intermediate IR that abstracts away

machine architecture and only customizes the optimization methods towards architecture in the

heuristics, machine details were barely involved in our verification work (only around 40 lines of

proof codes which are reusable for different architecture). A similar idea is described in the PhD

thesis of [9]

9.3 Future Work
9.3.1 Improved Scheduling Algorithms or Heuristics. The first possible future work is to apply our

framework to some advanced efficient (intra-block) instruction scheduling techniques like using

profiling [10] and integer programming [51]. Using our framework, those improvements will have

little influence on the proof code to further improve optimization performance.

9.3.2 Verified Inter-block Scheduling. Our framework currently only supports optimizations inside

a basic block (intra-block scheduling). We believe that similar idea used in our methods can be

applied to the correctness of inter-block scheduling. To achieve this, we need to use the concept

of program dependence relation that consists of both data dependence and control dependence

relations, i.e. constructing the program dependence graph [21, 25].

9.3.3 Verification of Parallelizing Compiler. We wish to stress that this work is not only the first

work on fully verified instruction scheduling, but also one of the first step on verification of compiler

optimization for multi-level parallelism, a.k.a the first step to bring CompCert to fully verified

-O2 and -O3 optimization. Instruction scheduling improves instruction-level parallelism. Besides

this, we should also consider the possibility of optimizing a program at data-level and thread-level

during compiler time. For example, transforming independent parts of a single-thread program

into a multi-thread program like loop parallelization [1].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

299:24 Ziteng Yang, Jun Shirako, and Vivek Sarkar

We believe our result in this work gave a hint on how to improve the parallelism technique of a

certified compiler. Current CompCert barely supports optimizations towards parallelly executing a

program in either instruction- or task- level.

10 Data Availability
The data and implementation referenced in this paper have been persistently archived [53].

Acknowledgments
We thank Elton Pinto from the University of Pennsylvania for helping us with knowledge of the

C interface in OCaml language in our implementation of the list scheduling algorithm. We thank

Prithayan Barua from SiFive and Jeffrey Young from Georgia Tech for helping with knowledge and

resources related to our experiments on the Risc-V machine. We thank Xiwei Wu from Shanghai

Jiao Tong University for inspiration on several mathematical problems related to our formal proofs

in Coq.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research under Award Number DE- FOA-0002460: X-Stack:

Programming Environments for Scientific Computing.

References
[1] Alexander Aiken and Alexandru Nicolau. 1988. Optimal loop parallelization. ACM SIGPLAN Notices 23, 7 (1988),

308–317.

[2] Andrew W Appel. 2014. Program logics for certified compilers. Cambridge University Press.

[3] Andrew W. Appel. 2023. Verified Functional Algorithms. Software Foundations, Vol. 3. Electronic textbook. http:

//softwarefoundations.cis.upenn.edu

[4] David Bernstein and Michael Rodeh. 1991. Global instruction scheduling for superscalar machines. In Proceedings of
the ACM SIGPLAN 1991 conference on Programming language design and implementation. 241–255.

[5] D. Bernstein, M. Rodeh, and I. Gertner. 1989. On the complexity of scheduling problems for parallel/pipelined machines.

IEEE Trans. Comput. 38, 9 (1989), 1308–1313. https://doi.org/10.1109/12.29469

[6] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2019. CompCertS: a memory-aware verified C compiler using a

pointer as integer semantics. Journal of Automated Reasoning 63 (2019), 369–392.

[7] Sandrine Blazy, Benoît Robillard, and Andrew W. Appel. 2010. Formal Verification of Coalescing Graph-Coloring

Register Allocation. In Programming Languages and Systems, Andrew D. Gordon (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 145–164.

[8] Uday Bondhugula, Aravind Acharya, and Albert Cohen. 2016. The Pluto+ Algorithm: A Practical Approach for

Parallelization and Locality Optimization of Affine Loop Nests. ACM Trans. Program. Lang. Syst. 38, 3, Article 12 (April
2016), 32 pages. https://doi.org/10.1145/2896389

[9] Sylvain Boulmé. 2021. Formally Verified Defensive Programming (efficient Coq-verified computations from untrusted ML
oracles). Habilitation à diriger des recherches. Université Grenoble-Alpes. https://hal.science/tel-03356701 See also

http://www-verimag.imag.fr/ boulme/hdr.html.

[10] William Y. Chen, Scott A. Mahlke, Nancy J. Warter, Sadun Anik, andWen-MeiW. Hwu. 1994. Profile-assisted instruction

scheduling. International Journal of Parallel Programming (1994). https://doi.org/10.1007/BF02577873

[11] Hong-Chich Chou and Chung-Ping Chung. 1995. An optimal instruction scheduler for superscalar processor. IEEE
Transactions on Parallel and Distributed Systems 6, 3 (1995), 303–313. https://doi.org/10.1109/71.372778

[12] Edward G. Coffman and John Bruno. 1976. Computer and job-shop scheduling theory. https://api.semanticscholar.

org/CorpusID:60396080

[13] R. Collins and G.B. Steven. 1996. Instruction scheduling for a superscalar architecture. In Proceedings of EUROMICRO
96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies. 643–650. https://doi.org/10.

1109/EURMIC.1996.546492

[14] CompCert web 2023. COMPCERT: COMPILERS YOU CAN FORMALLY TRUST. https://compcert.org.

[15] Cortex-A53 2012. Cortex-A53. https://developer.arm.com/Processors/Cortex-A53.

[16] David Delahaye. 2000. A tactic language for the system Coq. In Logic for Programming and Automated Reasoning: 7th
International Conference, LPAR 2000 Reunion Island, France, November 6–10, 2000 Proceedings 7. Springer, 85–95.

[17] J R Ellis. 1985. Bulldog: a compiler for VLIW architectures. (1 1985). https://www.osti.gov/biblio/5724953

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1109/12.29469
https://doi.org/10.1145/2896389
https://hal.science/tel-03356701
https://doi.org/10.1007/BF02577873
https://doi.org/10.1109/71.372778
https://api.semanticscholar.org/CorpusID:60396080
https://api.semanticscholar.org/CorpusID:60396080
https://doi.org/10.1109/EURMIC.1996.546492
https://doi.org/10.1109/EURMIC.1996.546492
https://compcert.org
https://developer.arm.com/Processors/Cortex-A53
https://www.osti.gov/biblio/5724953

Fully Verified Instruction Scheduling 299:25

[18] John R Ellis. 1986. Bulldog: a compiler for VLSI architectures. Mit Press.

[19] Paolo Faraboschi, Joseph A Fisher, and Cliff Young. 2001. Instruction scheduling for instruction level parallel processors.

Proc. IEEE 89, 11 (2001), 1638–1659.

[20] Paul Feautrier. 1991. Dataflow analysis of array and scalar references. International Journal of Parallel Programming
(1991). https://doi.org/10.1007/BF01407931

[21] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program dependence graph and its use in optimization.

ACM Transactions on Programming Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.
[22] Fisher. 1981. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE Trans. Comput. C-30, 7 (1981),

478–490. https://doi.org/10.1109/TC.1981.1675827

[23] Philip B Gibbons and Steven S Muchnick. 1986. Efficient instruction scheduling for a pipelined architecture. In

Proceedings of the 1986 SIGPLAN symposium on Compiler construction. 11–16.
[24] Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard. 2023. Formally Verifying

Optimizations with Block Simulations. Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023), 59–88.
[25] Mary Jean Harrold, Brian Malloy, and Gregg Rothermel. 1993. Efficient construction of program dependence graphs.

ACM SIGSOFT Software Engineering Notes 18, 3 (1993), 160–170.
[26] Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards Certified Separate Compilation

for Concurrent Programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 111–125.

https://doi.org/10.1145/3314221.3314595

[27] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight verification of

separate compilation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 178–190.

[28] Hironori Kasahara and Seinosuke Narita. 1984. Practical Multiprocessor Scheduling Algorithms for Efficient Parallel

Processing. IEEE Trans. Comput. C-33, 11 (1984), 1023–1029. https://doi.org/10.1109/TC.1984.1676376

[29] V. L. Kompel’makher and V. A. Liskovets. 1975. Sequential generation of arrangements by means of a basis of

transpositions. Cybernetics (1975). https://doi.org/10.1007/BF01069459

[30] M. Lam. 1988. Software pipelining: an effective scheduling technique for VLIW machines. SIGPLAN Not. 23, 7 (jun
1988), 318–328. https://doi.org/10.1145/960116.54022

[31] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.

[32] Xavier Leroy. 2009. A formally verified compiler back-end. Journal of Automated Reasoning 43 (2009), 363–446.

[33] Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 385–399.

[34] Anil Madhavapeddy and Yaron Minsky. 2022. Real World OCaml: Functional Programming for the Masses. Cambridge

University Press.

[35] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016. Verified peephole optimizations for CompCert.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. 448–461.
[36] George C Necula. 2000. Translation validation for an optimizing compiler. In Proceedings of the ACM SIGPLAN 2000

conference on Programming language design and implementation. 83–94.
[37] Daniel Patterson and Amal Ahmed. 2019. The next 700 compiler correctness theorems (functional pearl). Proceedings

of the ACM on Programming Languages 3, ICFP (2019), 1–29.

[38] Pierre-Marie Pédrot. 2019. Ltac2: tactical warfare. In The Fifth International Workshop on Coq for Programming
Languages, CoqPL, Vol. 2019.

[39] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation. In Tools and Algorithms for the Construction
and Analysis of Systems: 4th International Conference, TACAS’98 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS’98 Lisbon, Portugal, March 28–April 4, 1998 Proceedings 4. Springer, 151–166.

[40] PolyBench. 2011. The Polyhedral Benchmark Suite. http://www.cse.ohio-state.edu/~pouchet/software/polybench/.

[41] B. Ramakrishna Rau, Christopher D. Glaeser, and Raymond L. Picard. 1982. Efficient code generation for horizontal

architectures: Compiler techniques and architectural support. In Proceedings of the 9th Annual Symposium on Computer
Architecture (Austin, Texas, USA) (ISCA ’82). IEEE Computer Society Press, Washington, DC, USA, 131–139.

[42] Silvain Rideau and Xavier Leroy. 2010. Validating Register Allocation and Spilling. CC 6011 (2010), 224–243.

[43] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO:

A verified compiler for relaxed-memory concurrency. Journal of the ACM (JACM) 60, 3 (2013), 1–50.
[44] Cyril Six, Sylvain Boulmé, and David Monniaux. 2020. Certified and Efficient Instruction Scheduling: Application

to Interlocked VLIW Processors. Proc. ACM Program. Lang. 4, OOPSLA, Article 129 (nov 2020), 29 pages. https:

//doi.org/10.1145/3428197

[45] Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino. 2022. Formally verified

superblock scheduling. In Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

https://doi.org/10.1007/BF01407931
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1109/TC.1984.1676376
https://doi.org/10.1007/BF01069459
https://doi.org/10.1145/960116.54022
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
https://doi.org/10.1145/3428197
https://doi.org/10.1145/3428197

299:26 Ziteng Yang, Jun Shirako, and Vivek Sarkar

and Proofs (Philadelphia, PA, USA) (CPP 2022). Association for Computing Machinery, New York, NY, USA, 40–54.

https://doi.org/10.1145/3497775.3503679

[46] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W Appel. 2015. Compositional compcert. In

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 275–287.
[47] The OCaml Manual, chapter 22 2023. https://v2.ocaml.org/manual/intfc.html#c%3Aintf-c

[48] Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification of Translation Validators: A Case Study on Instruction

Scheduling Optimizations. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York,

NY, USA, 17–27. https://doi.org/10.1145/1328438.1328444

[49] U74MC 2021. SiFive U74-MC Core Complex Manual 21G1.01.00. https://starfivetech.com/uploads/u74mc_core_

complex_manual_21G1.pdf.

[50] Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig. 2022. Verified Compilation of C Programs with a Nominal

Memory Model. Proc. ACM Program. Lang. 6, POPL, Article 25 (jan 2022), 31 pages. https://doi.org/10.1145/3498686

[51] Kent Wilken, Jack Liu, and Mark Heffernan. 2000. Optimal instruction scheduling using integer programming. Acm
sigplan notices 35, 5 (2000), 121–133.

[52] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In

Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation. 283–294.
[53] Ziteng Yang, Jun Shirako, and Vivek Sarkar. 2024. Artifact for paper "Fully Verified Instruction Scheduling". https:

//doi.org/10.5281/zenodo.13625830.

[54] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enumeration for Rigorous Compiler Testing.

SIGPLAN Not. 52, 6 (jun 2017), 347–361. https://doi.org/10.1145/3140587.3062379

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 299. Publication date: October 2024.

https://doi.org/10.1145/3497775.3503679
https://v2.ocaml.org/manual/intfc.html#c%3Aintf-c
https://doi.org/10.1145/1328438.1328444
https://starfivetech.com/uploads/u74mc_core_complex_manual_21G1.pdf
https://starfivetech.com/uploads/u74mc_core_complex_manual_21G1.pdf
https://doi.org/10.1145/3498686
https://doi.org/10.5281/zenodo.13625830
https://doi.org/10.5281/zenodo.13625830
https://doi.org/10.1145/3140587.3062379

	Abstract
	1 Introduction
	1.1 Compiler Correctness and Formally Verified Compiler
	1.2 Related Work on Instruction Scheduling and its Verification
	1.3 Full Verification v.s. Verified Translation Validation
	1.4 Contributions
	1.5 Structure of This Paper

	2 Background
	2.1 Compiler-level Instruction Scheduling
	2.2 Dependence Relation
	2.3 Abstract Language of Low-level IR and Semantics Model of CompCert
	2.4 Compiler Correctness (Semantic Preservation)

	3 Overview of Our Approach
	4 Main Theorem
	4.1 Topological Sort and Topological Re-ordering
	4.2 Swapping Lemma
	4.3 Rule of Valid Scheduler
	4.4 Equivalence of Valid Schedulers
	4.5 Swapping Correctness and the Final Theorem

	5 Correctness of List Scheduling
	5.1 Dependence Graph Construction and Scheduling Heuristics
	5.2 Scheduling Algorithm
	5.3 Proving Correctness

	6 Framework Implementations in Coq Proof Assistant
	6.1 Formalization of Topological Properties and Swapping Lemma
	6.2 Forward Simulation Preservation of Abstract Scheduler
	6.3 Case Implementation on List Scheduling and Correctness

	7 Scheduling Heuristics Implementation for Specified Architecture
	7.1 Critical Path Scheduling
	7.2 Interaction between Coq/OCaml and C function

	8 Evaluation
	8.1 View 1: Proof Engineering
	8.2 View 2: Effect of Optimization

	9 Conclusion
	9.1 Trusted Computing Base (TCB)
	9.2 Inspiration on Reducing Verification Burden
	9.3 Future Work

	10 Data Availability
	Acknowledgments
	References

