Fully Verified Instruction Scheduling

Ziteng Yang, Jun Shirako, and Vivek Sarkar

Compiler Correctness & Verification

- Formal Verification: seeking 100% correctness guarantee
- **CompCert'** s approach: directly prove correctness in an interactive theorem prover (Coq)
	- Write the compiler as a Coq function¹
	- Formalize semantics of C, IR and assembly language in Coq
	- Prove semantics preservation of each translation in Coq

10/24/24

¹In the actual engineering, the Coq function was finally extracted into OCaml function to generate an executable file 2

Current state of CompCert

• Only verified several basic optimizations (O1-level optimization)

• e.g. Constant propagation, common subexpression elimination, redundancy elimination **nly verified several basic optimizations (O1-level optimization)**
• e.g. Constant propagation, common subexpression elimination, redundancy
elimination
nly support in-order translation
• It cannot reorder instructions a

• Only support in-order translation

Motivation for Compiler-level Instruction Scheduling

• Improve instruction-level parallelism and reduce pipeline stall for *in*order processors. [e.g. Cortex-A53, U74MC]

original order

```
i_1 reads r_1i_2 writes r_2, r_3i_3 writes r_1, r_2
```


Challenges in Verified Instruction Scheduling (intra-block)

- Semantics details of a reordering instructions
- Program states only matches at the start/end of a block, - no longer a lock-step simulation relation R_m R_m R_m R_m \mathbb{P} of \longrightarrow $\begin{picture}(150,10) \put(0,0){\dashbox{0}} \put(150,10){\circle*{1}} \put($ State transition diagram (regular pass) … R_m and R_m \longrightarrow \rightarrow \longrightarrow \longrightarrow \longrightarrow R_m R_m $p \longrightarrow 0$ $\longrightarrow 0$ $_{tp} \longrightarrow 0 \rightarrow \longrightarrow 0 \rightarrow \longrightarrow 0 \rightarrow$ R_m \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow State transition diagram (scheduling pass) Executing a basic block
	- Handling dependence relations between each instructions
	- Potentially heavy proof workload
	- Previous work: verified translation validation

• [POPL'08] Tristan, Jean-Baptiste, and Xavier Leroy. "Formal verification of translation validators: a case study on instruction scheduling optimizations."
 $\frac{1}{2}$ 450051.232 Civ. Curil, Sulvain Ravinas, Ravid Mannieux. $^{10/24/24}$ [OOPSLA'20] Six, Cyril, Sylvain Boulmé, and David Monniaux. "Certified and efficient instruction scheduling: application to interlocked VLIW processors." $\quad \, \, \rm{^{-5}}$

Full Verification v.s. Verified Translation Validation

Full verification v.s. Verified Translation Validation **n v.s. Verified Translation Validation**

scheduling [Tristan et al. 2008]

Final theorem of a verified translation validation:
 $\forall p \text{ tp}, \text{ if compile pass(p)} = tp \land \text{ validate(p, tp)} = True,$

then semantics preserve(p, tp)

Previous work on instruction scheduling [Tristan et al. 2008] [Six et al. 2020]

tan et al. 2008]

et al. 2020]

of a verified translation validation:
 $\nonumber p\nu le \text{pass}(p) = tp \land \text{validation:}$

then semantics_preserve (p, tp)

of a fully verified compilation:
 $\forall p \text{ tp. if compile pass}(p) = tp,$

then semantics_preserve (p, tp)

 $\forall p$ tp, if compile_pass(p) = tp /\ validate(p, tp) = True,
then semantics_preserve(p, tp)

Final theorem of a fully verified compilation:

(harder to prove, but stronger result)

This project: make this part verified, while keep the proof work lightweight

a.k.a. correct-by-construction

 $\overline{}$, and the contribution of the

Proof Logical Chain

Part I: swapping lemma : a property of topological order Part II: syntax-level valid instruction scheduler Part III: decomposing a valid scheduler Part IV: transitivity of semantics preservation Part V: correctness of swapping (semantics level)

Part I: swapping lemma- a property of topological order
Swapping lemma: A topological reordering of a list of partially ordered elements

Swapping lemma: A topological reordering of a list of partially ordered elements is equivalent to a finite sequence of swaps of adjacent but not ordered elements.

Part II: syntax-level valid instruction scheduler (intra-block)

The dependence constraints of the original program: a valid instruction scheduler conduct a topological reordering based on the **dependence** relation (defined in syntax level, by matching the register name).

10/24/24 and the contract of t

Part III: decompose a valid scheduler

Any syntax-level valid scheduler, reorders a program's instructions

Composition of a finite sequence of compiler passes, that only swap one pair of independent instructions (named single swappers)

=

Part IV: transitivity of semantics preservation

• The final goal of CompCert proof: backward simulation of state transition **t IV: transitivity of semantics preservation**
The final goal of CompCert proof: *backward simulation* of state transition
between C and compiled Asm program's small-step semantics, through
only proving *forward simulation* only proving forward simulation of each pass and lemmas that "flips" the simulation direction 1

Forward simulation (sufficient to prove this only for each single compiler pass)

 $10^{10/24/24}$ and the base theory of CompCert 14

Backward simulation (final goal of whole compiler, derived by forward simulation and determinism of assembly language)

Lemma: forward simulation is transitive

Part V: correctness of swapping

The only lemma that requires reasoning on semantics details: swapping only one pair of adjacent **syntax-level** independent instructions (RAW/WAR/WAW dependence derived by pattern-match) inside only one basic block of a program satisfied the forward simulation, a.k.a. semantics-level equivalence of the program

What did we get till here?

A general framework to prove any instruction scheduling algorithm d we get till here?
A general framework to prove any instruction scheduling a
- In other words, the theory above is once-for-all
The framework was formalized in Coq (based on CompCer

The framework was formalized in Coq (based on CompCert framework)

Prove a list-scheduling using our framework

• A concrete instruction scheduling implementation

- Generate the dependence graph of original basic block
- Iteratively choose and pop an available instruction, according to an outside scheduling heuristics to the scheduled list

```
Algorithm 1 Dependence Graph Generating: DRel(l)
                                        Require: List of instructions l = [i_1, i_2, ..., i_n]\triangleright Non-duplicate by giving index to them
                                        Ensure: Graph G that records G_l^{\mathcal{D}}, the generated order of l by \mathcal D⊳ Proved in Section.5.3
                                           if l = nil then
                                               G.nodes \leftarrow E_lG. edges \leftarrow \emptysetelse if l = i' :: l' then
                                               G. edges \leftarrow G. edges \cup \{(i', i) | i \in l' \land \mathcal{D}i'i\}G. edges \leftarrow G. edges \cup DRel(l').edgesend if
                                         Algorithm 2 List Scheduling S^*(\mathcal{P}, l)Require: A heuristic function P : list instruction \rightarrow list N
                                         Require: List instructions l = [i_1, i_2, ..., i_n]\triangleright Non-duplicate by giving index to them
                                         Ensure: l^* is a topo-reorder of l by G_l^{\mathcal{D}}⊳ Proved in Section.5.3
                                            G \leftarrow DRel(l)Priority \leftarrow \mathcal{P}(l)\triangleright \mathcal{P}(l)(k) will the priority of i_kl^* \leftarrow \Boxwhile G not empty do
                                                A \leftarrow \{i_k \in l \mid \forall i_{k'} \in l \cdot (i_{k'}, i_k) \notin G\}i_{k^*} \leftarrow i_{k^*} \in A such that Priority[k^*] is max
                                                l^* \leftarrow l^* + \left\lceil i_{k^*} \right\rceilG \leftarrow remove node i_{k^*} from G
                                            end while
                                                 return l^*10/24/24 19
```
Prove a list-scheduling using our framework

• A concrete instruction scheduling implementation

- Generate the dependence graph of original basic block
- Iteratively choose and pop an available instruction, according to an outside scheduling heuristics to the scheduled list

Prove a list-scheduling using our framework

Brief idea of prove the topo-logical reorder:

the scheduler maintains an invariant during scheduling

An Evaluation on Proof Engineering

LOC of program/functions and proofs in our work

10/24/24 **LOC of related work** 22

An Evaluation on Our List-scheduler's Performance (Improvement in execution times on Risc-V hardware platform)

Performance improvements by the certified instruction scheduler for PolyBench C 4.2

Future work

• Verifying Inter-block Scheduler, with alias analysis of memory access e**rifying Inter-block Scheduler, with alias analysis of memo**
• Best existing method also used verified translation validation only
• Block size change. Swapping lemma won't work
eneral: towards multi-level parallelism fo

- Best existing method also used verified translation validation only
- Block size change. Swapping lemma won't work

• General: towards multi-level parallelism for verified compiler

- Data-level parallelism
- Instruction-level parallelism (this work improved)
-

a.k.a. bringing CompCert to O2/O3-level optimization

Summary: verified instruction scheduling framework with multi-level flexibility

- Flexible algorithm changes
	- Change algorithm => only change proofs on syntax dependence preservation
	- Nothing about semantics again

• Flexible instruction scheduling heuristics

• Change scheduling heuristics => no change of correctness proof

• Flexible Machine Architecture

- Machine independent implementation (40 lines of Coq code diffs between x86- 64/Risc-V)
- Only implement different heuristics for different architecture

• Q & A?

A BLANK PAGE

Topological order: given a list l and a partial order R on its elements E_l , l is said to be an topo-**Solution For Fourier Alternation** is the solution of the solution of E_l , *i* is said to be an toposorted list by R if $\forall i_1 i_2 \in N$, R $[I[i_1]I[i_2] \rightarrow i_1 < i_2$ ($[I[i]$ means the i -th element of l)

a partial order R from dependence relation a topo-sorted list

Topological reorder: Given a topo-sorted list l of elements A by R , another list l' is said to be a topo-reorder of l iff l' contains exactly the same elements as l and is also topo-sorted by R .

Scheduling heuristics for Risc-V: an engineering trick

Coq-OCaml interface: a scheduling heuristics that only affect performance, not correctness, was not implemented in Coq but directly in an OCaml function

```
Require Import ExtrOcamlIntConv.
Parameter prioritizer: list int \rightarrow int \rightarrow list (list int) \rightarrow int \rightarrow (list int).
\cdots(* definition of encoding of instruction to an integer *)Definition prioritizer' (l: list instruction): list positive :=
  Let nodes := block2ids l in
  Let edges := nblock2edges (numlistgen l) in
  Let prior' := prioritizer nodes (int_of_nat (length nodes))
                              edges (int_of_nat (length edges)) in
```
- Since the CompCert's Coq code will eventually be extracted to OCaml, this does not change the trusted computing base

Scheduling heuristics for Risc-V: an engineering trick

OCaml-C interface: the scheduling heuristics in OCaml actually uses C interface further to reduce the developing time (we have existing tools in C)

```
open Ctypes
(* The prioritizer function in OCaml *)
Let prioritizer nodes n edges m: int list =
  (* First, we will need to convert them to C arrays *)
 Let nodes_arr = CArray.of\_list int nodes inlet edges_arr =Let inner = List.map (fun e -> CArray.of_list int e |> CArray.start) edges in
   let outer = CArray.of_list (ptr int) inner in outerin
 (* Now, we pass arguments into prioritizer *)let result =C. Functions prioritizer (CArray start nodes_arr) n (CArray start edges_arr) m
  in
 CArray.from_ptr result n |> CArray.to_list
```
 $int *prioritizer(int *nodes, int n, int **edges, int m);$

Scheduling heuristics for Risc-V : an engineering trick

Using Coq-OCaml-C interface is just an engineering choice, not a necessity of our implementation

We can still do everything in Coq, but it will increase the learning burden of both proof engineer and compiler-backend engineer without improving the correctness result.