Fully Verified Instruction Scheduling

Ziteng Yang, Jun Shirako, and Vivek Sarkar

Georgia Institute
of Technology

10/24/24

Compiler Correctness & Verification

* Formal Verification: seeking 100% correctness guarantee

 CompCert’ s approach: directly prove correctness in an interactive
theorem prover (Coq)
» Write the compiler as a Coq function?
* Formalize semantics of C, IR and assembly language in Coq
* Prove semantics preservation of each translation in Coq

PowerPC
assembly

From compcert.org

Other research projects: VeLLVM, CakeML, CertiCoq

10/24/24 2
1In the actual engineering, the Coq function was finally extracted into OCaml function to generate an executable file

Current state of CompCert

* Only verified several basic optimizations (O1-level optimization)

* e.g. Constant propagation, common subexpression elimination, redundancy
elimination

* Only support in-order translation
* It cannot reorder instructions a.k.a instruction scheduling (02- and O3-level)

Motivation for Compiler-level Instruction Scheduling

* Improve instruction-level parallelism and reduce pipeline stall for in-
order processors. [e.g. Cortex-A53, U74MC(]

Cycle ADD SUB FLOAT Cycle ADD SUB FLOAT

original order 1

) [l 1 | [
i4 reads rq 1 _1 _1 - _1
i, writes 15,73 2 L 2 lg lg | U1
i3 writes 14,75 3 | iy Iy 3 | iy [y
i, writes mem : -
4) 4 Ly 4 Ly
is reads 13, writes mem :
5 | i3 I3 5 | I3 I3
6 | Iy | 4 6 |ig |Ig | ig
o ls i5 lg 7

10/24/24

Challenges in Verified Instruction Scheduling (intra-block)

* Semantics details of a reordering instructions

* Program states only matches at the start/end of a block
xecutlng a basic block

- no longer a lock-step simulation relation (A

State transition diagram (regular pass) State transition diagram (scheduling pass)

* Handling dependence relations between each instructions
* Potentially heavy proof workload
* Previous work: verified translation validation

* [POPL08] Tristan, Jean-Baptiste, and Xavier Leroy. "Formal verification of translation validators: a case study on instruction scheduling optimizations."

1O/Zﬂ"/zﬂ'[OOPSLA’ZO] Six, Cyril, Sylvain Boulmé, and David Monniaux. "Certified and efficient instruction scheduling: application to interlocked VLIW processors."

Full Verification v.s. Verified Translation Validation

_ Full Verification Verified Translation validation

Algorithm Correctness .

Development Difficulty - (Potentially)

Compile Time Overhead -
(develop-time proof) (compile-time validation)

Flexibility -

(May need to change proof when changing algorithm) (Only validate output with input)

Methods Proof Assistant Proof Assistant
+ Principle of Algorithm Correctness + Symbolic Execution

10/24/24 6

Full verification v.s. Verified Translation Validation

Previous work on instruction scheduling {';i(stea;naletza(;.zglf)OS]

\ Final theorem of a verified translation validation:

VY p tp,if compile_pass(p) = tp /\ validate(p, tp) = True,

then semantics_preserve(p, tp)

Final theorem of a fully verified compilation:

(harder to prove, but stronger result)

V p tp, if compile_pass(p) = tp,

/ then semantics_preserve(p, tp)

This project: make this part verified,
while keep the proof work lightweight a.k.a. correct-by-construction

This project

P B
3
(s
. Coq) p—
e . Other
Parser, P __languages?.’ Programmed
lypechocl‘(ev 7 R Wdigiag o Type Graph Printing to asm g
simplifier (CIL) . mini-ML) /7 SR reconstruction coloring syntax in Caml
T %
Sy 7
s /
X, /
0 R PowerPC
assembly
- Layout of the
A Imva‘\ ‘HBCK Fm' — 1 EiFGt_mnsﬁmcno_?‘ ‘Va\]danon Hvaudation ‘ LW;‘:: rlzcaggn activation
~ Program Y It r‘ ranslation allocation instruction recognition of the record Programmed and
. 4 ; .
wl L ! proved in Cog
" |
& Mode, 1 - Fi Gaaliow ansiyses Constant Gommon Register allocation by SVE;‘; » Machine
2 r o r’/ Static ™, \\ propagation subexpressions graph coloring (Maps, Sets) arithmetic

T\ analyzer 4 | | |

Instruction Scheduling

Dependence Scheduler

(Correct with any heuristics)

p € Linear tp € Linear

Graph G

10/24/24 Scheduling Heuristics ;

Proof Logical Chain

Part I: swapping lemma : a property of topological order
Part Il: syntax-level valid instruction scheduler
Part lll: decomposing a valid scheduler

Part IV: transitivity of semantics preservation

Part V: correctness of swapping (semantics level)

Part I: swapping lemma- a property of topological order

Swapping lemma: A topological reordering of a list of partially ordered elements is
equivalent to a finite sequence of swaps of adjacent but not ordered elements.

| re-order

10/24/24

Part Il: syntax-level valid instruction scheduler (intra-block)

The dependence constraints of the original program: a valid instruction
scheduler conduct a topological reordering based on the dependence
relation (defined in syntax level, by matching the register name).

writes (12
writes (73

writes mem

10/24/24 11

Part Ill: decompose a valid scheduler

Any syntax-level valid scheduler,
reorders a program’s instructions

Composition of a finite sequence of compiler passes,
that only swap one pair of independent instructions
(named single swappers)

Decomposing a scheduler
/-\ . swap independent instructions

Sl N
O 7 e — ——— — -
S2v N\
O | —— — ———— — -
S &
O. n .
v Snl
— e e e - . —

=8 (1) .

Part IV: transitivity of semantics preservation

* The final goal of CompCert proof: backward simulation of state transition
between C and compiled Asm program’s small-step semantics, through
only proving forward simulation of each pass and lemmas that “flips”
the simulation direction?

e -
:m e S _____ \\ ,S\\
Sl Sz —— - % (2,————-»
\h ,_J\ 7
3 = o 7
R N 7
Rp, A implies R, R,/
\ //
- b
- =, ~ /
Sy IS &
----" e N

e

Forward simulation (sufficient to prove this only for

.) Backward simulation (final goal of whole compiler, derived
each single compiler pass)

by forward simulation and determinism of assembly
language)

10ne of the base theory of CompCert

Lemma: forward simulation is transitive

- one of the base theory of CompCert

e ——————X-

10/24/24

X

O

. forward simulation

. composing scheduler

15

Part V: correctness of swapping

The only lemma that requires reasoning on semantics details: swapping only one pair of
adjacent syntax-level independent instructions (RAW/WAR/WAW dependence derived by

pattern-match) inside only one basic block of a program satisfied the forward simulation,
a.k.a. semantics-level equivalence of the program

S R R,
Si 1 — %
Y~ \ . swap independent instructions ip iy il ip l

X . forward simulation

Whole proof idea

l , With a generated dependence relation R

topo-reorder of l by R

v~ X\ . swap independent instructions

D} forward simulation
l O . composing scheduler
St - X
O S N s S E———
S
i BN 2
X
O | | |
S X
-_

17

What did we get till here?

A general framework to prove any instruction scheduling algorithm
- In other words, the theory above is once-for-all

The framework was formalized in Coq (based on CompCert framework)

Prove a list-scheduling using our framework

* A concrete instruction scheduling implementation
* Generate the dependence graph of original basic block

* Iteratively choose and pop an available instruction, according to an outside
scheduling heuristics to the scheduled list

Algorithm 1 Dependence Graph Generating: DRel(l)

Require: List of instructions [= [iy, iy, ..., I,] > Non-duplicate by giving index to them
Ensure: Graph G that records QID‘ the generated order of / by D > Proved in Section.5.3
if [= nil then
G.nodes «— E;
G.edges «— 0
elseif [=i’ : I’ then
G.edges « G.edges U {(i',i)|i € I' A Di’i}
G.edges «— G.edges U DRel(l").edges
end if

Algorithm 2 List Scheduling S* (%P, 1)

Require: A heuristic function P : list instruction — list N

Require: List instructions [= [iy, iy, ..., i,] > Non-duplicate by giving index to them
Ensure: [* is a topo-reorder of / by QID > Proved in Section.5.3
G < DRel(l)
Priority « P(l) > P (1) (k) will the priority of iy
1]

while G not empty do
A « {iy €l |Vip € L(ix+, ix) ¢ G}
i+ «— ix+ € A such that Priority[k*] is max
I* — I* + +[ig]
G « remove node ir+ from G
end while
return [*

10/24/24

Prove a list-scheduling using our framework

* A concrete instruction scheduling implementation
* Generate the dependence graph of original basic block

* Iteratively choose and pop an available instruction, according to an outside
scheduling heuristics to the scheduled list

Available Next

[(OOO0O0OI1+I7]

Scheduled Instructions [O

Scheduling Heuristics

(does not affect correctness proof)

“Critical Path Scheduling” Remaining Dependence Graph G

10/24/24 20

Prove a list-scheduling using our framework

Brief idea of prove the topo-logical reorder:
the scheduler maintains an invariant during scheduling

* EXCLUSIVE: I N G.node = (
* SUB:lU G.node < original
* SORT: lis sorted by D

[(OOO0O0OI1+I7]

Scheduled Instructions [

Everything is formalized/checked in Coq,
and incorporated into CompCert project

Available Next

O
O/V

Remaining Dependence Graph G

10/24/24

21

An Evaluation on Proof Engineering

e errr————— e T

Base theories on topo-reorder’s properties (once-for- Coq

all)

Base theories on semantics (once-for-all) Coq - 2.2k
List-scheduling algorithm (excluding heuristics) Coq 0.15k 1.0k
Scheduling heuristics Ocaml 25 -
Scheduling heuristics C 0.7k -
Machine dependent proof (Risc-V) Coq - 40
Machine dependent proof (x86) Coq - 35

LOC of program/functions and proofs in our work

_ oy e _ Lines of Proof Code

This work List Scheduling
[Tristan et al. 2008] No List and Trace Scheduling 11k
[Six et al. 2020] NO List Scheduling (VLIW) 18k + 10k (architecture)

10/24/24 LOC of related work

22

An Evaluation on Our List-scheduler’s Performance
(Improvement in execution times on Risc-V hardware platform)

- 2

(<] 1.81

T

(<]

=

o 1.5 140

Q 134 137 136 1.34 :

g. . 106 1.29 1.29 1.29

O

)

[]

>

O

e

=

]

E 05

@

>

o

Q

£ 0
& & H & @ S & P S S & & @ & T o 2 R LW R & B & gt & SE IS
& & A AN S o ; «f & g . & & S ¥ &S & P
P 5 3 0" Y‘\aﬂé— b\b\' 34 roo'a‘ bd:\ bOQ.Q b\)‘ \&b *49 Qﬁf‘b 0?@ QE,Q@ :’(}\@(\G’s\ c.aa\ c'a;,\ \\)bo $ F bé. & & & & & ' 6@

& & o & § & & ¢ & 4 &

Performance improvements by the certified instruction scheduler for PolyBench C 4.2

10/24/24 23

Future work

* Verifying Inter-block Scheduler, with alias analysis of memory access
* Best existing method also used verified translation validation only
* Block size change. Swapping lemma won’t work

* General: towards multi-level parallelism for verified compiler
* Data-level parallelism
* Instruction-level parallelism (this work improved)
 Task-level parallelism (e.g. loop parallelism)

a.k.a. bringing CompCert to 02/03-level optimization

Summary: verified instruction scheduling framework with
multi-level flexibility

* Flexible algorithm changes
* Change algorithm => only change proofs on syntax dependence preservation
* Nothing about semantics again

* Flexible instruction scheduling heuristics
* Change scheduling heuristics => no change of correctness proof

* Flexible Machine Architecture

* Machine independent implementation (40 lines of Coq code diffs between x86-
64/Risc-V)
* Only implement different heuristics for different architecture

*Q&A?

A BLANK PAGE

10/24/24

27

Topological order: given a list [and a partial order R on its elements E}, L is said to be an topo-
sorted list by R if Vi; i, € N,R I[i;]l[i,] = i1 < i, (l[i] means the i-th element of [)

writes 1,
writes 13

s men o o o o e

reads 13
writes mem

a partial order R from dependence relation a topo-sorted list

10/24/24 28

Topological reorder: Given a topo-sorted list [of elements A by R, another list I' is
said to be a topo-reorder of [iff I' contains exactly the same elements as [and is also topo-sorted

by R.

re-order

ORO=0N0

10/24/24 29

Scheduling heuristics for Risc-V: an engineering trick

Coqg-OCaml interface: a scheduling heuristics that only affect performance, not correctness,
was not implemented in Coq but directly in an OCaml function

Require Import ExtrOcamlIntConv.
Parameter prioritizer : list int -> int -> list (list int) -> int -> (list int).

(¥ definition of encoding of instruction to an integer x*)

Definition prioritizer' (l: list instruction): list positive :=
let nodes := block2ids 1 in
let edges := nblock2edges (numlistgen 1) in
let prior' := prioritizer nodes (int_of_nat (length nodes))
edges (int_of_nat (length edges)) in

- Since the CompCert’s Coq code will eventually be extracted to OCaml, this does not change
the trusted computing base

10/24/24 30

Scheduling heuristics for Risc-V: an engineering trick

OCaml-C interface: the scheduling heuristics in OCaml actually uses C interface further to
reduce the developing time (we have existing tools in C)

open Ctypes
(* The prioritizer function in 0Caml =)
let prioritizer nodes n edges m: int list =
(* First, we will need to convert them to C arrays *)
let nodes_arr = CArray.of_list int nodes in
let edges_arr =
let inner = List.map (fun e -> CArray.of_list int e |> CArray.start) edges in
let outer = CArray.of_list (ptr int) inner in outer

in
(* Now, we pass arguments into prioritizer =)
let result =
C.Functions.prioritizer (CArray.start nodes_arr) n (CArray.start edges_arr) m
in

CArray.from_ptr result n |> CArray.to_list

int *prioritizer(int *nodes, int n, int **xedges, int m);

10/24/24 31

Scheduling heuristics for Risc-V : an engineering trick

Using Coq-OCaml-C interface is just an engineering choice, not a necessity of our
implementation

We can still do everything in Coq, but it will increase the learning burden of both
proof engineer and compiler-backend engineer without improving the correctness

result.

