
Fully Verified Instruction Scheduling

Ziteng Yang, Jun Shirako, and Vivek Sarkar

110/24/24

Compiler Correctness & Verification

• Formal Verification: seeking 100% correctness guarantee

• CompCert’ s approach: directly prove correctness in an interactive
theorem prover (Coq)

• Write the compiler as a Coq function1

• Formalize semantics of C, IR and assembly language in Coq
• Prove semantics preservation of each translation in Coq

Other research projects: VeLLVM, CakeML, CertiCoq

1In the actual engineering, the Coq function was finally extracted into OCaml function to generate an executable file
2

From compcert.org

10/24/24

Current state of CompCert

• Only verified several basic optimizations (O1-level optimization)
• e.g. Constant propagation, common subexpression elimination, redundancy

elimination

• Only support in-order translation
• It cannot reorder instructions a.k.a instruction scheduling (O2- and O3-level)

310/24/24

Motivation for Compiler-level Instruction Scheduling

• Improve instruction-level parallelism and reduce pipeline stall for in-
order processors. [e.g. Cortex-A53, U74MC]

𝒊𝟏
 reads 𝒓𝟏

𝒊𝟐
 writes 𝒓𝟐, 𝒓𝟑

𝒊𝟑
 writes 𝒓𝟏, 𝒓𝟐

𝒊𝟒
 writes 𝒎𝒆𝒎

𝒊𝟓
 reads 𝒓𝟑, writes 𝒎𝒆𝒎

original order

410/24/24

• Semantics details of a reordering instructions
• Program states only matches at the start/end of a block,

 - no longer a lock-step simulation relation

• Handling dependence relations between each instructions
• Potentially heavy proof workload

Challenges in Verified Instruction Scheduling (intra-block)

• Previous work: verified translation validation
• [POPL’08] Tristan, Jean-Baptiste, and Xavier Leroy. "Formal verification of translation validators: a case study on instruction scheduling optimizations."
• [OOPSLA’20] Six, Cyril, Sylvain Boulmé, and David Monniaux. "Certified and efficient instruction scheduling: application to interlocked VLIW processors."

𝑹𝒎
 𝑹𝒎

𝒑

𝒕𝒑

State transition diagram (regular pass)

…

𝑹𝒎

…

𝑹𝒎

𝒑

𝒕𝒑 …

𝑹𝒎

…

… …

State transition diagram (scheduling pass)

Executing a basic block

510/24/24

6

Full Verification v.s. Verified Translation Validation

Verified Translation validationFull Verification

NoYesAlgorithm Correctness

EasierHarder (Potentially) Development Difficulty

Higher
(compile-time validation)

Lower
(develop-time proof)

Compile Time Overhead

Higher
(Only validate output with input)

Lower
(May need to change proof when changing algorithm)

Flexibility

Proof Assistant
+ Symbolic Execution

Proof Assistant
+ Principle of Algorithm Correctness

Methods

10/24/24

Full verification v.s. Verified Translation Validation

This project: make this part verified,
while keep the proof work lightweight

Final theorem of a verified translation validation:

∀ 𝑝 𝑡𝑝, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑖𝑙𝑒_𝑝𝑎𝑠𝑠 𝑝 = 𝑡𝑝 /\ 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝑝, 𝑡𝑝 = 𝑇𝑟𝑢𝑒,

𝑡ℎ𝑒𝑛 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠_𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒(𝑝, 𝑡𝑝)

__

Final theorem of a fully verified compilation:

(harder to prove, but stronger result)

∀ 𝑝 𝑡𝑝, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑖𝑙𝑒_𝑝𝑎𝑠𝑠(𝑝) = 𝑡𝑝,

𝑡ℎ𝑒𝑛 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠_𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒(𝑝, 𝑡𝑝)

Previous work on instruction scheduling [Tristan et al. 2008]
 [Six et al. 2020]

a.k.a. correct-by-construction

710/24/24

Instruction Scheduling

Linear Linear

Scheduling Heuristics

Dependence
Graph

Scheduler
(Correct with any heuristics)

This project

810/24/24

Proof Logical Chain

Part I: swapping lemma : a property of topological order

Part II: syntax-level valid instruction scheduler

Part III: decomposing a valid scheduler

Part IV: transitivity of semantics preservation

Part V: correctness of swapping (semantics level)

910/24/24

Swapping lemma: A topological reordering of a list of partially ordered elements is
equivalent to a finite sequence of swaps of adjacent but not ordered elements.

=

1010/24/24

Part I: swapping lemma- a property of topological order

Part II: syntax-level valid instruction scheduler (intra-block)

The dependence constraints of the original program: a valid instruction
scheduler conduct a topological reordering based on the dependence
relation (defined in syntax level, by matching the register name).

1110/24/24

Part III: decompose a valid scheduler

Composition of a finite sequence of compiler passes,
that only swap one pair of independent instructions
(named single swappers)

Any syntax-level valid scheduler,
reorders a program’s instructions

=

1210/24/24

Decomposing a scheduler
 swap independent instructions

1310/24/24

Part IV: transitivity of semantics preservation

• The final goal of CompCert proof: backward simulation of state transition
between C and compiled Asm program’s small-step semantics, through
only proving forward simulation of each pass and lemmas that “flips”
the simulation direction1

Forward simulation (sufficient to prove this only for
each single compiler pass)

Backward simulation (final goal of whole compiler, derived
by forward simulation and determinism of assembly
language)

1One of the base theory of CompCert

implies

1410/24/24

forward simulation

composing scheduler

Lemma: forward simulation is transitive
- one of the base theory of CompCert

1510/24/24

Part V: correctness of swapping

forward simulation

swap independent instructions

The only lemma that requires reasoning on semantics details: swapping only one pair of
adjacent syntax-level independent instructions (RAW/WAR/WAW dependence derived by
pattern-match) inside only one basic block of a program satisfied the forward simulation,
a.k.a. semantics-level equivalence of the program

16

𝑹𝒎
 𝑹𝒎

𝑖ଵ ∷ 𝑖ଶ ∷ 𝑙 𝑖ଶ ∷ 𝑙

𝑖ଶ ∷ 𝑖ଵ ∷ 𝑙 𝑖ଵ ∷ 𝑙

𝑙

𝑙

, with a generated dependence relation 𝑅

transitivity
Of

forward simulation
swap independent instructions

composing scheduler

Whole proof idea

topo-reorder of 𝑙 by 𝑅

1710/24/24

What did we get till here?

A general framework to prove any instruction scheduling algorithm

- In other words, the theory above is once-for-all

The framework was formalized in Coq (based on CompCert framework)

1810/24/24

Prove a list-scheduling using our framework
• A concrete instruction scheduling implementation

• Generate the dependence graph of original basic block
• Iteratively choose and pop an available instruction, according to an outside

scheduling heuristics to the scheduled list

1910/24/24

Prove a list-scheduling using our framework
• A concrete instruction scheduling implementation

• Generate the dependence graph of original basic block
• Iteratively choose and pop an available instruction, according to an outside

scheduling heuristics to the scheduled list

[] ++ [?]
Scheduled Instructions 𝒍

Available Next

Which is best?

Pick one

Scheduling Heuristics
(does not affect correctness proof)
“Critical Path Scheduling” Remaining Dependence Graph 𝑮

2010/24/24

Prove a list-scheduling using our framework

Brief idea of prove the topo-logical reorder:
the scheduler maintains an invariant during scheduling

Everything is formalized/checked in Coq,
and incorporated into CompCert project

• EXCLUSIVE: 𝒍 ∩ 𝑮. 𝒏𝒐𝒅𝒆 = ∅

• SUB: 𝒍 ∪ 𝑮. 𝒏𝒐𝒅𝒆 ⊆ 𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍

• SORT: 𝒍 is sorted by 𝑫
[] ++ [?]

Available Next

Pick one …

…

…

Remaining Dependence Graph 𝑮

Scheduled Instructions 𝒍

Dependence 𝑫

2110/24/24

An Evaluation on Proof Engineering

Lines of Proof CodeScopeFully Verified

4kList SchedulingYesThis work

11kList and Trace SchedulingNo[Tristan et al. 2008]

18k + 10k (architecture)List Scheduling (VLIW)NO[Six et al. 2020]

LOC of related work

LOC of program/functions and proofs in our work

ProofsFunctionsLanguage

0.8k-CoqBase theories on topo-reorder’s properties (once-for-
all)

2.2k-CoqBase theories on semantics (once-for-all)

1.0k0.15kCoqList-scheduling algorithm (excluding heuristics)

-25OcamlScheduling heuristics

-0.7kCScheduling heuristics

40-CoqMachine dependent proof (Risc-V)

35-CoqMachine dependent proof (x86)

2210/24/24

An Evaluation on Our List-scheduler’s Performance
(Improvement in execution times on Risc-V hardware platform)

Performance improvements by the certified instruction scheduler for PolyBench C 4.2

2310/24/24

Future work

• Verifying Inter-block Scheduler, with alias analysis of memory access
• Best existing method also used verified translation validation only
• Block size change. Swapping lemma won’t work

• General: towards multi-level parallelism for verified compiler
• Data-level parallelism
• Instruction-level parallelism (this work improved)
• Task-level parallelism (e.g. loop parallelism)

a.k.a. bringing CompCert to O2/O3-level optimization

2410/24/24

• Flexible algorithm changes
• Change algorithm => only change proofs on syntax dependence preservation
• Nothing about semantics again

• Flexible instruction scheduling heuristics
• Change scheduling heuristics => no change of correctness proof

• Flexible Machine Architecture
• Machine independent implementation (40 lines of Coq code diffs between x86-

64/Risc-V)
• Only implement different heuristics for different architecture

• Q & A?

Summary: verified instruction scheduling framework with
multi-level flexibility

2510/24/24

A BLANK PAGE

2610/24/24

2710/24/24

Topological order: given a list 𝑙 and a partial order 𝑅 on its elements 𝐸௟, 𝑙 is said to be an topo-
sorted list by 𝑅 if ∀𝑖ଵ 𝑖ଶ ∈ 𝑁, 𝑅 𝑙 𝑖ଵ 𝑙 𝑖ଶ → 𝑖ଵ < 𝑖ଶ (𝑙 𝑖 means the 𝑖 -th element of 𝑙)

a partial order 𝑅 from dependence relation a topo-sorted list

2810/24/24

Topological reorder: Given a topo-sorted list 𝑙 of elements 𝐴 by 𝑅, another list 𝑙′ is
said to be a topo-reorder of 𝑙 iff 𝑙′ contains exactly the same elements as 𝑙 and is also topo-sorted
by 𝑅.

2910/24/24

Scheduling heuristics for Risc-V: an engineering trick

Coq-OCaml interface: a scheduling heuristics that only affect performance, not correctness,
was not implemented in Coq but directly in an OCaml function

- Since the CompCert’s Coq code will eventually be extracted to OCaml, this does not change
the trusted computing base

3010/24/24

Scheduling heuristics for Risc-V: an engineering trick

OCaml-C interface: the scheduling heuristics in OCaml actually uses C interface further to
reduce the developing time (we have existing tools in C)

3110/24/24

Scheduling heuristics for Risc-V : an engineering trick

Using Coq-OCaml-C interface is just an engineering choice, not a necessity of our
implementation

We can still do everything in Coq, but it will increase the learning burden of both
proof engineer and compiler-backend engineer without improving the correctness
result.

3210/24/24

