Maximally permissive supervisor control of timed discrete-event systems under partial observation

Ziteng Yang & Xiang Yin & Shaoyuan Li

Department of Computer Science, Shanghai Jiao Tong University

youngster@sjtu.edu.cn

21st IFAC World Congress July 12-17, 2020, Berlin, Germany

Supervisory Control of DES

•	System:	DES $G = (X, \Sigma, \delta, x_0)$
•	Observable:	$\Sigma = \Sigma_o \stackrel{.}{\cup} \Sigma_{uo}$ and $P \colon \Sigma^* \to \Sigma_o^*$
•	Controllable:	$\Sigma = \Sigma_c \ \dot{\cup} \ \Sigma_{uc}$
•	Supervisor:	$S: \Sigma_0^* \to 2^{\Sigma}$ satisfying $\Sigma_{uc} \subseteq S(\alpha)$ for any $\alpha \in \Sigma_0^*$

System Model of TDES

2

SJTU

•	System:	TDES $G = (X, \Sigma, \delta, x_0)$
•	Event:	$\Sigma = \Sigma_{act} \dot{\cup} \{tick\}$
•	Language:	L(G), generated by G under supervisor S

Supervisory Control of TDES

Literature Review

Timed DES and Supervisory Control

- Brandin, B. and Wonham, W. (1994). Supervisory control of timed discreteevent systems. *IEEE Trans. Automatic Control*, 39(2), 329–342.
- Takai, S. and Ushio, T. (2006). A new class of supervisors for timed discrete event systems under partial observation. *Discrete Event Dynamic Systems*, 16(2), 257–278.

Supervisor Synthesis

- Yin, X. and Lafortune, S. (2016a). Synthesis of maximally permissive supervisors for partially observed discrete event systems. IEEE Trans. Automatic Control, 61(5), 1239–1254.
- Yin, X. and Lafortune, S. (2016b). A uniform approach for synthesizing property-enforcing supervisors for partially-observed discrete-event systems. IEEE Trans. Automatic Control, 61(8), 2140–2154.

Supervisory Control of TDES

Supervisory Control of TDES

Problem 1. Given a TDES G and a safety specification $K \subseteq L(G)$, find a partial-observation supervisor $S: P(L(G)) \rightarrow 2^{\Sigma_{act}} \times 2^{\Sigma_{for}}$ such that

6

• S is **safe**, i.e., $L(S/G) \subseteq K$; and

• S is maximally-permissive, i.e., for any S' that is safe, we have $L(S/G) \not\subseteq L(S'/G)$.

Consider a prefix closed sub-language $K = \overline{K} \subseteq L(G)$ Assume that K is recognized by a strict sub-automaton $H = (X_H, \Sigma, \delta_H, x_0)$ of G, i.e. L(H) = K

Unobservable Reach

Properties of Unobservable Reach

Lemma 1.
$$\forall \gamma, \iota, UR_{\gamma}(UR_{\gamma}(\iota)) = UR_{\gamma}(\iota).$$

Intuitively: The unobservable reach defined indeed yields a reachability closure.

6

Lemma 2. For any γ , ι and state $x \in UR_{\gamma}(\iota)$, there exists a state $x' \in \iota$ and a sequence of unobservable events $u_1u_2 \dots u_m \in \Sigma_{uo}$ such that $x = \delta(x', u_1 \dots u_m)$ and $\forall 0 \le \iota \le m, \delta(x', u_1 \dots u_m) \in UR_{\gamma}(\iota)$.

Intuitively: there is a "construction path" from the initial set ι .

Let $\iota_0 = \{0, 1, 2\}, \gamma_0 = (\Sigma_{uc}, \emptyset)$, we have $\iota_1 = OR_o(\iota_0 | \gamma_0) = \{3, 4\}$;

Then let $\gamma_1 = (\Sigma_{uc} \cup \{c\}, \{o\})$, then $UR_{\gamma_1}(\iota_1) = \{3, 4, 5\}$, pay attention that tick was preempted at state "4" and "5" by forcing event o.

But if we pick control decision $\gamma_2 = (\Sigma_{uc} \cup \{c\}, \emptyset)$, then we have $UR_{\gamma_2}(\iota_1) = \{3, 4, 5, 6, 7, 8\}$.

Inclusive Controller: Definition

- System:
- States:
- Initial states:
- Decisions:
- Transition:
- Supervisor:

 $\mathsf{T} = (\boldsymbol{Q}_T, \boldsymbol{\Sigma}_0, \boldsymbol{\Gamma}, \boldsymbol{h}_T, \boldsymbol{Q}_{0,T}), \text{ w.r.t } \boldsymbol{G} = (\boldsymbol{X}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{x}_0)$

$$\boldsymbol{Q}_T \subseteq \boldsymbol{2}^X \times \boldsymbol{\Gamma}$$

 $Q_{0,T} \subseteq Q_T$

$\Gamma \subseteq 2^{\Sigma_{act}} \times 2^{\Sigma_{for}}$

Use notation $(I(q), (C_a(q), C_f(q)))$ to denote components of $q \in Q_T$

 $\mathbf{h}_{\mathrm{T}}: \mathbf{Q}_{T} \times \Sigma_{\mathrm{o}} \rightarrow 2^{\mathbf{Q}_{T}}$, non-deterministic

$$S: \Sigma_{\mathbf{0}}^* \to 2^{\Sigma}$$
 satisfying $\Sigma_{\mathbf{uc}} \subseteq S(\alpha)$ for any $\alpha \in \Sigma_{\mathbf{0}}^*$

Example: Total Inclusive Controller

Inclusive Controller: Deterministic Transition

6

Deterministic Transition $H_T: Q \times (\Sigma_o \times \Gamma) \to Q$ s.t. $H_T(q, (\sigma, \gamma)) = q' = (\iota, \gamma')$ if $q' \in h_T(q, \sigma)$ and $\gamma = \gamma'$. **Extend** H_T to $H_T: Q \times (\Sigma_o \times \Gamma)^* \to Q$ Given a supervisor *S*, we get control decision whenever $\sigma \in \Sigma_o$ occurs.

Inclusive Controller: Deterministic Transition

6

Deterministic Transition $H_T: Q \times (\Sigma_o \times \Gamma) \to Q$ s.t. $H_T(q, (\sigma, \gamma)) = q' = (\iota, \gamma')$ if $q' \in h_T(q, \sigma)$ and $\gamma = \gamma'$. **Extend** H_T to $H_T: Q \times (\Sigma_o \times \Gamma)^* \to Q$ Given a supervisor *S*, we get control decision whenever $\sigma \in \Sigma_o$ occurs.

Given a supervisor *S*, we get control decision whenever $\sigma \in \Sigma_o$ occurs.

$$\xi_{\alpha,S} := (\sigma_1, S(\sigma_1))(\sigma_2, S(\sigma_1\sigma_2)) \dots (\sigma_n, S(\alpha)) \in (\Sigma_o \times \Gamma)^*$$

Inclusive Controller: Deterministic Transition

6

Deterministic Transition $H_T: Q \times (\Sigma_o \times \Gamma) \to Q$ s.t. $H_T(q, (\sigma, \gamma)) = q' = (\iota, \gamma')$ if $q' \in h_T(q, \sigma)$ and $\gamma = \gamma'$. **Extend** H_T to $H_T: Q \times (\Sigma_o \times \Gamma)^* \to Q$ Given a supervisor *S*, we get control decision whenever $\sigma \in \Sigma_o$ occurs.

Given a supervisor *S*, we get control decision whenever $\sigma \in \Sigma_o$ occurs.

Inclusive Controller: Properties

Theorem 1. Given a supervisor *S* for *G*, and $\alpha \in P(L(S/G))$, we have $I(q_{\alpha,S}) = \{\delta(x_0,s) \in X : s \in L(S/G) \land P(s) = \alpha\}.$

6

Intuitively: The theorem indicates that all supervisors was "*embedded*" in the Total Inclusive Controller, i.e. we can synthesis a certain supervisor by choosing a certain transition at each $q \in Q_{Tol(G)}$ upon observable event o, which eliminate the non-determinism of the controller.

Inclusive Controller: Properties

Theorem 1. Given a supervisor *S* for *G* and $\alpha \in P(L(S/G))$, we have $I(q_{\alpha,S}) = \{\delta(x_0,s) \in X : s \in L(S/G) \land P(s) = \alpha\}.$

Intuitively: The theorem indicates that all supervisors was "embedded" in the Total Inclusive Controller, i.e. we can synthesis a certain supervisor by choosing a certain transition at each $q \in Q_{Tol(G)}$ upon observable event o, which eliminate the non-determinism of the controller.

6

Theorem 2. Supervisor *S* is safe if and only is $\forall \alpha \in P(L(S/G))$, $I(q_{\alpha,S}) \subseteq X_H$.

Inclusive Controller: Properties

 $(q_{\alpha,S})$

Theorem 1. Given a supervisor *S* for *G* and $\alpha \in P(L(S/G))$, we have $I(q_{\alpha,S}) = \{\delta(x_0,s) \in X : s \in L(S/G) \land P(s) = \alpha\}.$

Intuitively: The theorem indicates that all supervisors was "embedded" in the Total Inclusive Controller, i.e. we can synthesis a certain supervisor by choosing a certain transition at each $q \in Q_{Tol(G)}$ upon observable event o, which eliminate the non-determinism of the controller.

6

Theorem 2. Supervisor *S* is safe if and only is $\forall \alpha \in P(L(S/G))$,

Suggests an approach for synthesizing a safe controller. Now we say *T* is safe if for any $q \in Q_T$, $I(q) \subseteq X_H$.

All Inclusive Controller for Safety

Definition. (AIC-Safe) Given TDES G, $A(G) = (Q_A, \Sigma_0, \Gamma, h_A, Q_{0,A})$ is a **safe** and **complete** inclusive controller such that for any complete controller T that is safe, we have $T \sqsubseteq A(G)$.

6

Construction A(G) :

- Start from all possible initial-states;
- Explore the entire space where all states are subsets of X_H ;

- Iteratively remove states that violates the completeness requirement (in order to guarantee safety, some states might make the AIC incomplete), until the resulting subsystem is complete; **Theorem 3.** Use S(T) to denote all supervisors *included* in *T*, then a supervisor S is safe **iff** $S \in S(A(G))$.

6

Suggests that the AIC-Safe includes all safe supervisors .

6

supervisor S is said to be *included* in T if

•
$$q_{0,S} \in Q_{0,T}$$
; and

• for any $\alpha \sigma \in P(\mathcal{L}(S/G))$, where $\alpha \in \Sigma_o^*$ and $\sigma \in \Sigma_o$, we have $S(\alpha \sigma) \in C_T(H_T(q_{0,S}, \xi_{\alpha,S}), \sigma)$.

Example: AIC-Safety

6

Initially, we choose an initial state $q_0 \in Q_{0,A}$ that contains the maximum number of feasible events among all initial states, i.e., 6

 $\forall q_0' \in Q_{0,A} : |\operatorname{FEAS}(q_0')| \le |\operatorname{FEAS}(q_0)|.$

At each state q reached, upon the occurrence of observable event $\sigma \in \Sigma_o$, we choose a successor state $q' \in h_A(q, \sigma)$ that contains the maximum number of feasible events among all successor states, 6

 $\forall q'' \in h_A(q, \sigma) : |\operatorname{FEAS}(q'')| \le |\operatorname{FEAS}(q')|.$

At each state q reached, upon the occurrence of observable event $\sigma \in \Sigma_o$, we choose a successor state $q' \in h_A(q, \sigma)$ that contains the maximum number of feasible events among all successor states, 6

 $\forall q'' \in h_A(q, \sigma) : |\operatorname{FEAS}(q'')| \le |\operatorname{FEAS}(q')|.$

We repeat the above procedure until all reachable states are visited (either by a depth-first search or a breath-first search) and denote by $T^* \sqsubseteq \mathcal{A}(G)$ the resulting inclusive controller. 6

Theorem 4. *T*^{*}includes a unique supervisor *S*^{*}, which solves **Problem 1**.

Conclusion

Contributions:

- Supervisor control of Timed Discrete Event System
- Solved synthesizing problem of safe supervisors for TDES under partial observation

15

- The solution is maximally permissive
- Generalize previous synthesis techniques from the untimed setting to the timed setting

Conclusion

Contributions:

- Supervisor control of Timed Discrete Event System
- Solved synthesizing problem of safe supervisors for TDES under partial observation

15

- The solution is maximally permissive
- Generalize previous synthesis techniques from the untimed setting to the timed setting

Future Direction:

Investigate the non-blocking control problem for TDES

Conclusion

Contributions:

- Supervisor control of Timed Discrete Event System
- Solved synthesizing problem of safe supervisors for TDES under partial observation

15

- The solution is maximally permissive
- Generalize previous synthesis techniques from the untimed setting to the timed setting

Future Direction:

Investigate the non-blocking control problem for TDES

Thank You!