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Abstract: In this paper, we investigate the supervisory control problem for timed discrete-
event systems (TDES) under partial observation. In the timed setting, the system consists
of both standard logical events and time event, where the former can be disabled directly
by the supervisor if it is controllable while the latter can only be preempted by forcing the
occurrences of forcible events. We consider a general control mechanism where the supervisor
can choose which events to force dynamically online at each instant. The design objective is to
synthesize a maximally-permissive supervisor to restrict the behavior of the system such that
the closed-loop language is within a safe specification language. Effective procedure is presented
to synthesize such a supervisor. To our knowledge, how to synthesize a maximally-permissive
partial-observation supervisor has not been solved for timed DES. We provide a solution to this
problem under a general control mechanism.
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1. INTRODUCTION

The supervisory control theory (SCT) of Discrete Event
Systems (DES) is a formal framework for the synthesis
of correct-by-construction control logic for complex auto-
mated systems (Wonham and Cai, 2018). In the SCT, the
system is modeled as a DES whose behavior is restricted
by a supervisor that disables/enables events dynamically
online based on its observation. Since the seminal work of
Ramadge and Wonham (1987), the SCT has been devel-
oped very extensively in the past 30 years and has been ap-
plied to many real-world systems; some recent applications
of the SCT include, e.g., MRI scanners (Theunissen et al.,
2013), gene regulatory networks (Baldissera et al., 2015),
warehouse robots (Tatsumoto et al., 2018) and waterway-
lock systems (Goorden et al., 2019).
In the supervisory control theory, one of the central prob-
lems is how to synthesize a maximally-permissive safe su-
pervisor. Specifically, the safety requirement is modeled as
a specification sub-language and the closed-loop language
is said to be safe if its behavior is within the specification.
Furthermore, we want that the synthesized supervisor
works in a least-restrictive manner, i.e., it disables events
only when it is necessary to do so. The supervisor syn-
thesis problem is particularly challenging in the partial-
observation setting as the property of observability is not
preserved under union. Many different approaches have
been proposed in the literature to handle this problem;
see, e.g., Heymann and Lin (1994); Ben Hadj-Alouane
et al. (1996); Takai and Ushio (2003); Komenda et al.
⋆ This work was supported by the National Natural Science Foun-
dation of China (61803259, 61833012).

(2011); Cai et al. (2015). Particularly, in our recent works
(Yin and Lafortune, 2016a,b, 2017), a uniform frame-
work was proposed for synthesizing maximally-permissive
partial-observation supervisors that are both safe and non-
blocking.
In many real-world systems, timing information is crucial
as the occurrence of an event may be within a designated
time bound. Therefore, in Brandin and Wonham (1994),
the framework of timed discrete events systems (TDES)
was proposed to capture this temporal specification. The
SCT has also been developed extensively in the timed
setting; see, e.g., Lin and Wonham (1995); Takai (2000);
Schafaschek et al. (2016); Lin et al. (2018). In the control
of TDES, a new event tick representing a time unit is
introduced in addition to standard logic events; such an
event cannot be disabled directly and it can only be
preempted via some forcible events. More recently, Zhao
et al. (2015); Alves et al. (2017); Rashidinejad et al. (2018);
Pruekprasert and Ushio (2019) considered how to control
a TDES in a networked environment with communication
delays and losses. State-based control for TDES was also
investigated by Rahnamoon and Wonham (2018). The
authors in Zhang et al. (2013); Zhang and Cai (2019)
studied the supervisor localization problem for TDES.
Also, decentralized control of TDES was investigated by
Nomura and Takai (2011); Miura and Takai (2018).
Based on the original framework of Brandin and Won-
ham, in Takai and Ushio (2006), a generalized framework
for the control of TDES was proposed. Specifically, this
framework allows the supervisor to choose which events
to force dynamically at each instant, where in the original



framework events that are forced are “static”. However,
in both the original framework of Brandin and Wonham
and the generalized framework of Takai and Ushio, the
maximally-permissive supervisor synthesis problem has
not yet been solved even for safety specifications only. For
example, in Takai and Ushio (2006), the authors provide
a normality based solution. A solution based on relative
observability in the timed setting was provided in Cai
et al. (2016). However, none of the existing solutions is
maximally-permissive.
In this paper, we tackle the safe supervisor synthesis
problem for TDES under the partial-observation setting.
More specifically, we adopt the general framework of Takai
and Ushio so that the supervisor can choose forcible
events dynamically online. We propose a new information
structure that captures all safe control decisions, and based
on such a structure, a maximally-permissive supervisor
can be synthesized. The proposed approach is motivated
by our recent work on supervisory control of untimed
DES (Yin and Lafortune, 2016a,b). However, the control
mechanisms of the timed setting and the untimed setting
are quite different as the former also needs to handle
forcible events appropriately to “control” the time event.
Therefore, new plant and control operators, as well as
their properties, are proposed to handle this issue. To our
knowledge, how to synthesize a maximally-permissive safe
supervisor in the timed setting was not solved before.
The rest of this paper is organized as follows. Section 2
presents some basic preliminaries and formulates the prob-
lem. Section 3 defines the concept of unobservable reach
and observable reach. Section 4 proposes the inclusive con-
troller for the timed setting, which is further generalized to
the all inclusive controller in Section 5 by taking the safety
requirement into account. The supervisor synthesis proce-
dure is also discussed in Section 5. Finally, we conclude
the paper in Section 6.

2. PRELIMINARY AND PROBLEM FORMULATION

2.1 System Model

A Timed Discrete Event System (TDES) in the framework
of Brandin and Wonham is modeled as a deterministic
finite state automaton

G = (X,Σ, δ, x0),

where X is the finite set of states, Σ is the finite set of
events, δ : X ×Σ → X is partial transition function, x0 ∈
X is the initial state. The event set is further partitioned
as Σ := Σact∪{tick}, where Σact is the set of usual events
in untimed systems and tick is a special event representing
a “time unit”. Let Σ∗ be the set of all finite strings over Σ
including the empty string ϵ. Then the transition function
is also extended to δ : X × Σ∗ → X in the usual manner;
see, e.g., Cassandras and Lafortune (2008). The language
generated by G is define by L(G) = {s ∈ Σ∗ : δ(x0, s)!},
where ! means “is defined”. We also define EL(G)(s) :=
{σ ∈ Σ : sσ ∈ L(G)} as the set of events defined upon the
occurrence of string s in G. For any language L ⊆ Σ∗, we
define L = {s ∈ Σ∗ : ∃w ∈ Σ∗ s.t. sw ∈ L} as the prefix-
closure of L; we call L prefix-closed if L = L. Similarly, for
any state x ∈ X, we define EG(x) := {σ ∈ Σ : δ(x, σ)!} as
the set of events defined at state x ∈ X in G.

2.2 Supervisory Control of TDES

We assume that event set Σact is partitioned as
Σact = Σc∪̇Σuc,

where Σc is the set of controllable events and Σuc is the
set of uncontrollable events. That is, we can disable the
occurrences of events in Σc. In the timed setting, however,
event tick cannot be disabled directly. Instead, it can be
preempted by forcible events. We denote by Σfor ⊆ Σact

the set of all forcible events. The reader is referred to
Brandin and Wonham (1994) for the physical meaning of
forcible events as well as how a TDES is modeled.
Furthermore, we assume that the system is partially-
observed. To this end, event set is also partitioned as

Σ = Σo∪̇Σuo,

where Σo is the set of observable events and Σuo is the set
of unobservable events. The natural projection P : Σ∗ →
Σ∗

o is defined recursively by:

P (ϵ) = ϵ and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo
.

Natural projection is also extended to P : 2Σ
∗ → 2Σ

∗
o by

for any L ⊆ Σ∗, we have P (L) := {P (s) : s ∈ L}.
In this paper, we consider a general class of supervisors for
TDES proposed by Takai and Ushio (2006). In this setting,
a supervisor needs to make the following two decisions at
each instant

• what events need to be enabled; and
• what events need to be forced (to preempt tick).

Therefore, a supervisor S is defined as a function
S : P (L(G)) → 2Σact × 2Σfor (1)

such that for any α ∈ P (L(G)), S(α) = (Sa(α), Sf (α))
satisfies the following two conditions

• Σuc ⊆ Sa(α); and
• Sf (α) ⊆ Sa(α) ∩ Σfor.

That is, a supervisor should always enable uncontrollable
events and can only force forcible events that are enabled.
Event set S(α) satisfying the above two conditions is also
referred to an admissible control decision and we denote
by Γ the set of all admissible control decisions.
Then the closed-loop language of TDES G under supervi-
sor S, denoted by L(S/G), is defined recursively as follows:

• ϵ ∈ L(S/G);
• For any s ∈ L(S/G) and σ ∈ Σ

· if σ ∈ Σact, then
sσ ∈ L(S/G) ⇔ σ ∈ EL(G)(s) ∩ Sa(P (s))

· if σ = tick, then
sσ ∈ L(S/G) ⇔
[σ ∈ EL(G)(s)] ∧ [EL(G)(s) ∩ Sf (P (s)) = ∅].

The intuition of the above definition is as follows. For any
standard event in Σact, it can happen if it is feasible and is
enabled by S. However, for event tick, it can happen only
when it is feasible and no feasible events are forced, i.e.,
event tick is not preempted.



2.3 Supervisor Synthesis Problem

The goal of the supervisor is to restrict the behavior
of the system such that the closed-loop system satisfies
some desired property. In this paper, we consider safety
as the control objective. Formally, we consider a prefix-
closed sub-language K = K ⊆ L(G) as the safety
specification. Then the maximally-permissive supervisor
synthesis problem that we solve in this paper is formulated
as follows.
Problem 1. Given a TDES G and a safety specification
K ⊆ L(G), find a partial-observation supervisor S :
P (L(G)) → Γ such that

• S is safe, i.e., L(S/G) ⊆ K; and
• S is maximally-permissive, i.e., for any S′ that is safe,

we have L(S/G) ̸⊂ L(S′/G).

For the sake of simplicity, we assume that the specification
language K is recognized by a strict sub-automaton H =
(XH ,Σ, δH , x0) of G, i.e., L(H) = K, such that the
following conditions hold:

• ∀s ∈ L(H) : δH(x0, s) = δ(x0, s); and
• ∀s ∈ L(G) \ L(H) : δ(x0, s) /∈ XH .

Note that this assumption is without loss of generality as
we can always refine the state space of H such that the
above conditions hold. Therefore, XH ⊆ X is essentially
the set of legal states and a supervisor is safe if and only
if ∀s ∈ L(S/G) : δ(x0, s) ∈ XH .
Remark 2. In some applications, one wants to synthesize
a supervisor that exactly achieves K. This problem is
referred to as the supervisor existence problem and it has
been shown by Takai and Ushio (2006) that controllability
together with weak observability provide necessary and
sufficient conditions for the supervisor existence problem.
However, the supervisor synthesis problem considered here
is more challenging. Partial solutions have been provided
in Takai and Ushio (2006) and Cai et al. (2016), but
none of the solutions is maximally permissive. To our
knowledge, how to synthesize a maximally-permissive safe
supervisor has not yet been solved in the timed setting.

3. UNOBSERVABLE REACH AND OBSERVABLE
REACH

In this section, we first focus on investigating how the
information about the system, i.e., state estimate, evolves
during the control process in the timed setting.
Specifically, when a supervisor controls a TDES, there are
two instants the information about the plant should be
updated:

• when a new observable event occurs; and
• when a new control decision is issued.

The first scenario is captured by the observable reach
defined as follows.
Definition 3. (Observable Reach) Let ı ⊆ X be a set of
states, γ = (γa, γf ) be a control decision that is applied
currently and σ ∈ Σo be a new observable event. Then
the observable reach of ı upon the occurrence of σ under
control decision γ, where σ ∈ γa ∪ {tick}, denoted by

ORσ(ı | γ), is the set of states that can be reached
immediately. Formally,

• If σ ∈ Σact, then
ORσ(ı | γ) := {δ(x, σ) ∈ X : x ∈ ı}.

• If σ = tick, then
ORσ(ı | γ) := {δ(x, σ) ∈ X : x ∈ ı∧EG(x)∩ γf = ∅}.

Now, suppose that the state estimate of the system is
ı ⊆ X. When the supervisor makes a new control decision
γ, the system may reach a set of new states via some
unobservable strings; such a set of states is called the
unobservable reach. However, unlike the untimed case,
where the enablement status of an event is fixed within its
unobservable reach, the enablement status of event tick is
dynamic within its unobservable reach in the timed setting
as whether or not it is preempted depends on the existence
of a feasible forcible event at that point. Therefore, we
propose the following new definition of unobservable reach.
Definition 4. (Unobservable Reach) Let ı ⊆ X be a set of
states and γ = (γa, γf ) ∈ 2Σact ×2Σfor be control decision.
Then the unobservable reach of ı under γ, denoted by
URγ(ı), is defined recursively as follows:

• ı ⊆ URγ(ı);
• For any x ∈ URγ(ı), σ ∈ γa∩Σuo such that δ(x, σ) =
x′, we have x′ ∈ URγ(ı);

• For any x ∈ URγ(ı) such that EG(x) ∩ γf = ∅,
δ(x, tick) = x′ and tick ∈ Σuo, we have x′ ∈ URγ(ı).

Remark 1. In general, event tick can be either observable
or unobservable depending on whether or not the system
has a clock. According to Definitions 3 and 4, if tick ∈ Σo,
then the unobservable reach is the same as the untimed
setting, while the observable reach is not. On the other
hand, if tick ∈ Σuo, then the observable reach is the same
as the untimed setting, while the unobservable reach is
not. Our definitions aim to capture both cases in a general
manner.

The following results establish some of the properties of
the proposed operators. The first lemma shows that the
unobservable reach defined indeed yields a reachability
closure.
Lemma 5. For any set of states ı ⊆ X and any control
decision γ ∈ Γ, we have URγ(ı) = URγ(URγ(ı)).

Proof. By Definition 4,we know URγ(ı) ⊆ URγ(URγ(ı)).
Hence, it suffices to show that URγ(URγ(ı)) ⊆ URγ(ı). To
this end, we assume that URγ(URγ(ı)) ̸⊆ URγ(ı). Note
that URγ(URγ(ı)) is expended recursively from URγ(ı).
Therefore, we know that there exist states x ∈ X and
event σ, such that

• x ∈ URγ(ı) ∩ URγ(URγ(ı)); and
• δ(x, σ) /∈ URγ(ı); and
• either (i) σ ∈ γa ∩ Σuo; or (ii) [σ ∈ {tick} ∩ Σuo] ∧
[EG(x) ∩ γf = ∅].

That is, δ(x, σ) is the first state that is not in URγ(ı).
However, by Definition 4, the first and the third condition
also imply that δ(x, σ) ∈ URγ(ı), which is a contradiction.
Therefore, we must have URγ(URγ(ı)) ⊆ URγ(ı). 2

Lemma 6. For any state x ∈ URγ(ı), there exists a
state x′ ∈ ı and a sequence of unobservable events
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Fig. 1. A TDES G with Σo = {o},Σc = {c} and Σfor =
{o}. States 7 and 8 are illegal states.

u1u2 . . . um ∈ Σ∗
uo such that x = δ(x′, u1u2 . . . um) and

δ(x′, u1u2 . . . ui) ∈ URγ(ı) for any i ≤ m.

Proof. By the definition of URγ(ı), we know that
• If x ∈ ı ⊆ URγ(S), then assign x′ = x and
u1u2, . . . , um = ϵ, we have δ(x′, ϵ) = x ∈ URγ(ı)

• For any x ∈ URγ(ı) satisfying this property, i.e.
x = δ(y, u1u2 . . . um) where y ∈ URγ(ı), we consider
every σ ∈ EG(x):

· If σ ∈ EG(x) ∩ Σuo, then x′ = δ(x, σ) ∈ URγ(ı);
· If σ ∈ {tick} ∩ Σuo and EG(x) ∩ γa = ∅, then
x′ = δ(x, σ) ∈ URγ(ı)

Rewrite σ as um+1 for a certain σ, we have ∀1 ≤ i ≤
m+ 1, δ(x′, u1u2 . . . ui) ∈ URγ(ı)

Since above is the only possible way that URγ(ı) was
constructed inductively, the lemma was proved. 2

The following example illustrates how the observable reach
and the unobservable reach are computed.
Example 7. Let us consider TDES G shown in Figure 1.
Let ı0 = {0, 1, 2}, i.e., the system is possibly at states 0, 1
or 2, and the control decision is γ0 = (Σuc, ∅), i.e., all
controllable events are disabled and no event is forced.
When new observable event o ∈ Σo occurs, we have
ı1 = ORo(ı0 | γ0) = {3, 4}. From state ı1, if we pick
control decision γ1 = (Σuc ∪ {c}, {o}), then we have
URγ1(ı1) = {3, 4, 5} since event o is feasible and forced
at state 4 which preempts event tick. On the other hand,
if we pick control decision γ2 = (Σuc ∪ {c}, ∅), then we
have URγ2(ı1) = {3, 4, 5, 6, 7, 8}.

4. INCLUSIVE CONTROLLER

In this section, we introduce the notion of Inclusive Con-
troller (IC) that combines the observable reach and the
unobservable reach in order to describe the entire control
process.

4.1 Definition of the Inclusion Controller

Definition 8. (Inclusive Controller) An inclusive con-
troller T w.r.t. G is a 5-tuple

T = (QT ,Σo,Γ, hT , Q0,T ),

where
• QT ⊆ 2X × Γ is the set of states in T , where each
Q-state q is in the form of (ı, γ) = (ı, (γa, γf ));

• Σo is the set of observable events in G;
• Γ ⊆ 2Σact × 2Σfor is the set of admissible control

decisions of G;

• hT : QT × Σo→ 2QT is the partial non-deterministic
transition function from a state to a set of states satis-
fying the following constraints: for any q1 = (ı1, γ1) =
(ı1, (γ1,a, γ1,f )), q2 = (ı2, γ2) = (ı2, (γ2,a, γ2,f )) ∈ QT

and σ ∈ Σo such that q2 ∈ hT (q1, σ), we have
· σ ∈ γ1,a ∪ {tick}
· ı2 = URγ2(ORσ(ı1 | γ1))

• Q0,T ⊆ QT is the set of initial states in T , which
satisfies the following constraint: for any q = (ı, γ) ∈
Q0,T , we have ı = URγ({x0}).

A state (ı, γ) in T is also referred to as an information
state, which captures the following two information. The
first component of ı captures the current-state estimate
of the system, i.e., all possible states the system can be
in currently, and the second component γ captures the
current control decision applied. Therefore, a transition
q2 ∈ h(q1, σ) denotes that a new event σ is observed
at state q1 and a new control decision γ2, which is the
second component of q2, is issued, which yields a new
state estimate ı2 = URγ2(ORσ(ı1 | γ1)) as the first
component of q2. Note that the transition function is non-
deterministic in general as the choice of control decision
upon the occurrence of an observable event is not unique
and we would like to investigate the effects of all possible
control decisions in a single structure. For convenience,
hereafter, for each state q ∈ QT , we denote by I(q) its
state estimate component and denote by C(q) its control
decision component with C(q) = (Ca(q), Cf (q)).
In the definition of the IC, an event σ can occur from
state q only when σ ∈ Ca(q) or σ = tick. Moreover, by the
definition the observable reach, such an event should also
be feasible from some plant state in I(q). For the purpose
of control, a supervisor should be able to react to all such
feasible events. This leads to the concept of completeness.
Definition 9. (Completeness) An inclusive controller T =
(QT ,Σo,Γ, hT , Q0,T ) is said to be complete if, for any
q ∈ QT and σ ∈ Σo, we have

• If σ ∈ Σact, then
hT (q, σ)! ⇔ ∃x∈I(q) : [δ(x, σ)!] ∧ [σ ∈ Ca(q)].

• If σ = tick, then
hT (q, σ)! ⇔ ∃x∈I(q) : [δ(x, σ)!]∧ [EG(x)∩Cf (q)=∅].

As examples, consider G in Figure 1, two complete ICs T1

and T2 w.r.t. G are shown in Figure 2.
Definition 10. (Subsystem) Given two inclusive controllers
Ti = (QTi , hTi ,Σo,Γ, Q0,Ti), i = 1, 2, we say T1 is a
subsystem of T2, denoted by T1 ⊑ T2, if

• Q1 ⊆ Q2 and Q0,1 ⊆ Q0,2; and
• ∀q ∈ Q1, γ ∈ Γ, hT1

(q, γ) ⊆ hT2
(q, γ).

Recall that the transition function hT is non-deterministic
in general, i.e., when hT (q, σ) is defined, its successor
states may not be unique. Note that, in Definition 8, we
just require that any transition in h should satisfy the
transition constraints; but not all transitions satisfying
the constraints have to be defined. We call an inclusive
controller T total if it contains all transitions satisfying
the constraints. We denote by T (G) = (Q,Σo,Γ, h,Q0)
the total inclusive controller for G, where we drop the
subscript for the sake of simplicity. Clearly, the total
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Fig. 2. Inclusive Controllers T1 (depicted with both solid
lines and dashed lines) and T2 (depict with only solid
lines) w.r.t. G1. For the sake of simplicity, we use uc
to denote all uncontrollable events here. Also, the dot
on the right hand side of initial states means that
all states on the two sides of the dot are pairwise
connected.

inclusive controller T (G) is complete and for any inclusive
controller T , we have T ⊑ T (G). For example, T1 in
Figure 2, it in fact is the total inclusive controller T (G)
for system G in Figure 1.

4.2 Properties of the Inclusive Controller

In this subsection, we show that the inclusive controller
and the transition rules defined indeed give the state
estimate of the closed-loop control system.
As we discussed earlier, transition function h : Q ×
Σo → 2Q is non-deterministic as we may choose different
control decisions after the same observation. Therefore, by
incorporating the information of the control decision, the
transition function becomes deterministic. To this end, we
define a control-couple as a pair of an observable event and
a control decision in the form of (σ, γ) ∈ (Σo × Γ). Then,
for an inclusive control T , we define another transition
function

HT : Q× (Σo × Γ) → Q

by: for any q, q′ ∈ Q, σ ∈ Σo and γ ∈ Γ, we have
HT (q, (σ, γ)) = q′ if q′ ∈ hT (q, σ) and γ = C(q′). Function
HT can also be extended to HT : Q × (Σo × Γ)∗ → Q
recursively.
Now, let S : P (L(G)) → Γ be a supervisor for TDES G and
α = σ1 . . . σn ∈ P (L(S/G)) be a string of observable events
where σi ∈ Σo. Then α induces the following sequence of
control-couples
ξα,S := (σ1, S(σ1))(σ2, S(σ1σ2)) . . . (σn, S(α)) ∈ (Σo × Γ)∗

(2)
Note that the above sequence of control-couples does not
contain the initial control decision S(ϵ). To encode this
information, we define the initial state under S by

q0,S = (URS(ϵ)({x0}), S(ϵ)). (3)
Clearly, q0,S is also an initial state in T (G). Therefore,
starting from q0,S and by executing ξα,S , we reach state
qα,S := HT (q0,S , ξα,S) in the inclusive controller.
Example 11. Recall the total inclusive controller T1 in Fig-
ure 2. Let us consider a supervisor S that works as follows.
Initially, S neither enable nor force any events, and then

enable event c and force event o after o is observed, i.e.,
S(ϵ) = (Σuc, ∅) and S(o) = (Σuc∪{c}, {o}). Let us consider
α = o. Then we have q0,S = ({0, 1, 2}, (Σuc, ∅)) and
qα,S = HT (q0,S , (o, S(o))) = ({3, 4, 5}, (Σuc ∪ {c}, {o})).

The following result reveals that such a state reached is
indeed the state estimate of the closed-loop system.
Theorem 12. Let S : P (L(G)) → Γ be a supervisor for
TDES G and α ∈ P (L(S/G)) be an observable string.
Then we have

I(qα,S)={δ(x0, s)∈X : s∈L(S/G) ∧ P (s)=α}.

Proof. (RHS⊆LHS) It suffices to show that, for any s ∈
L(S/G) such that P (s) = α, we have δ(x0, s) ∈ I(qα,S).
We prove by induction on the length of s. For the induction
basis, we have x0 ∈ I((URS(ϵ)({x0}), S(ϵ))) immediately.
Now, we assume that δ(x0, s) ∈ I(qα,S) for |s| = n and we
consider string sσ ∈ L(S/G), where σ ∈ Σ. We consider
the following cases.
Since sσ ∈ L(S/G), we have
Case 1: σ ∈ Σact. For this case, we have σ ∈ EL(G)(s) ∩
Sa(α). This implies that σ ∈ EG(δ(x0, s)) ∩ Ca(qα,S). If
σ ∈ Σo, by Definition 3, we have

δ(x0, sσ) ∈ ORσ(I(qα,S) | Ca(qα,S)).

Moreover, by Definition 4, we have
ORσ(I(qα,S) | Ca(qα,S))

⊆ URS(ασ)(ORσ(I(qα,S) | Ca(qα,S))).

Also, by transition function HT , we have
I(qασ,S) = URS(ασ)(ORσ(I(qα,S) | Ca(qα,S))).

Therefore, we have δ(x0, sσ) ∈ I(qP (sσ),S) = I(qασ,S). On
the other hand, if σ ∈ Σuo, then we have δ(x0, sσ) =
δ(δ(x0, s), σ) ∈ I(qP (sσ),S) = I(qα,S) immediately.

Case 2: σ = tick. For this case, we have σ ∈ EL(G)(s) and
EL(G)(s)∩Sf (α) = ∅. Which implies that σ ∈ EG(δ(x0, s))
and EG(δ(x0, s)) ∩ Cf (qα,S) = ∅. Similar to Case 1, we
also have δ(x0, sσ) ∈ I(qα,S) if σ ∈ Σuo and δ(x0, sσ) ∈
I(qασ,S) if σ ∈ Σo.
For both cases, we have δ(x0, sσ) ∈ I(qP (sσ),S), which
proves this direction.
(LHS⊆RHS) Let us consider an arbitrary state x ∈
I(qα,S). We prove by induction on the length of α that
there exists a string s ∈ L(S/G) such that P (s) = α and
δ(x0, s) = x.
When |α| = 0, we have I(qϵ,S) = URS(ϵ)({x0}). By
Lemma 6, we know that a sequence of unobservable events
u1u2 . . . um ∈ Σ∗

uo such that x = δ(x0, u1u2 . . . um) and
xi := δ(x0, u1u2 . . . ui) ∈ URS(ϵ)({x0}) for any i ≤ m. By
Definition 4, for each 0 ≤ i < m, we have

• ui+1 ∈ EG(xi) = EL(G)(u1 . . . ui); and
• ui+1 ∈ Sa(ϵ) when ui+1 ∈ Σact; and
• Sf (ϵ) ∩ EL(G)(u1 . . . ui) = ∅ when ui+1 = tick.

According to the definition of L(S/G), we know that
u1u2 . . . um ∈ L(S/G).
Now, let us assume that for any x ∈ I(qα,S), there exists
a string s ∈ L(S/G) such that P (s) = α and δ(x0, s) = x
when |α| = n. We consider a state x ∈ I(qασ,S) where



|α| = n and σ ∈ Σo. By Definition 3, Definition 4 and
Lemma 6, we know that there exists a state x̂ ∈ I(qα,S)
and a sequence of unobservable events u1u2 . . . um ∈ Σ∗

uo
such that

• x = δ(x̂, σu1u2 . . . um)!;
• σ ∈ Sa(α) when σ ∈ Σact; and
• Sf (α) ∩ EG(x̂) = ∅ when σ = tick; and
• xi := δ(x̂, σu1u2 . . . ui) ∈ URS(ασ)(OR(I(qα,S) |

S(α))) for any i ≤ m.
By the induction hypothesis, we know that there exists
a string ŝ such that ŝ ∈ L(S/G) such that P (ŝ) = α
and δ(x0, ŝ) = x̂. Therefore, EG(x̂) = EL(G)(ŝ). By
Definition 4, similar to the argument in the induction basis
for sequence u1 . . . um, we have ŝσu1u2 . . . um ∈ L(S/G).
Since P (ŝσu1u2 . . . um) = ασ, we prove the induction step.
This completes the proof. 2

5. SUPERVISOR SYNTHESIS PROCEDURE

5.1 All Inclusive Controller for Safety

By Theorem 12, we know that I(qα,S) essentially captures
all possible states reachable in the closed-loop system.
Then the following theorem says that, to guarantee safety
for a supervisor, it suffices to make sure that it will not
reach a state whose first component contains an illegal
state.
Theorem 13. Supervisor S is safe if and only if

∀α ∈ P (L(S/G)) : I(qα,S) ⊆ XH .

Proof. By Theorem 12, we have I(qα,S) = {δ(x0, s) ∈
X : s ∈ L(S/G) ∧ P (s) = α}. Therefore, if S is safe, i.e.
L(S/G) ⊆ K, we have ∀s ∈ L(S/G), s ∈ K. Therefore
∀s ∈ L(S/G), x = δ(x0, s) ∈ XH as K is recognized by H,
which suggests I(qα,S) ⊆ XH ;
On the other hand, if I(qα,S) ⊆ XH , i.e. ∀s ∈ L(S/G) :
δ(x0, s) ∈ XH . Since H recognizes K, we have s ∈ K,
suggesting that L(S/G) ⊆ K. 2

The above theorem suggests an approach for synthesizing
a safe controller. In order to maintain safety, it suffices
to make sure that any information state reached in the
inclusive controller is safe. Formally, we say that an in-
clusive controller T = (QT , hT ,Σo,Γ, Q0,T ) is safe if for
any q ∈ QT , we have I(q) ⊆ XH . Then we define the All
Inclusive Controller for Safety (AIC-Safe) as the “largest”
safe inclusive controller as follows.
Definition 14. (All Inclusive Controller for Safety) The
all inclusive controller for safety is a complete and safe
inclusive controller

A(G) = (QA, hA,Σo,Γ, Q0,A)

such that, for any complete inclusive controller T that is
safe, we have T ⊑ A(G).

The AIC-Safe can be constructed as follows. First, starting
from all possible initial-states, we expend the entire state-
space in which all states are subsets of XH . Then, we
iteratively remove states that violates the completeness
requirement, i.e., a state from which some feasible events
are not defined (in order to guarantee safety). Note that
removing incomplete state may introduce new incomplete

states; hence this step needs to be performed iteratively
until the resulting subsystem is complete. Such a construc-
tion procedure is the same as the untimed case and the
reader is referred to Yin and Lafortune (2016b) for more
details. Here, we use an example to illustrate the AIC and
how it is constructed.
Example 15. Still, we consider TDES G shown in Figure 1
with X \XH = {7, 8}. Then the inclusive controller T2 in
Figure 2 it is in fact the AIC-Safe A(G) for G. Compared
with the total inclusive controller T1 = T (G) in the same
figure, the dashed-line states and transitions are removed
since 7, 8 /∈ XH . By removing this state, the remaining
structure is already complete, which is the AIC-Safe.

5.2 Property of the AIC-Safe

Let T be an inclusive controller, q ∈ QT be a state and
σ ∈ Σo be an observable event. We define

CT (q, σ) := {C(q′) ∈ Γ : q′ ∈ hT (q, σ)}
as the set of control decisions that may be issued upon
the occurrence of σ from state q. Then we can relate a
supervisor and an inclusive controller with the help of the
following definition.
Definition 16. Given a complete inclusive controller T , a
supervisor S is said to be included in T if

• q0,S ∈ Q0,T ; and
• for any ασ ∈ P (L(S/G)), where α ∈ Σ∗

o and σ ∈ Σo,
we have S(ασ) ∈ CT (HT (q0,S , ξα,S), σ).

The set of all supervisors included in T is denoted by S(T ).

The following result shows that the AIC-Safe includes all
safe supervisors.
Theorem 17. A supervisor S is safe iff S ∈ S(A(G)).

Proof. If S is safe, then for α ∈ P (L(S/G)), we have
I(qα,S) ⊆ XH by Theorem 13, which means S is included
in a complete and safe inclusive controller. Thus S ∈
S(A(G)). If S ∈ S(A(G)), then S is included in A(G).
Thus for any ασ ∈ P (L(S/G)) where ασ ∈ Σ∗

o, we have
S(ασ) ∈ CT (H(q0,S , ξα,S)). Since A(G) is complete and
I(H(q0,S , ξα,S)) ⊆ XH , we know that no illegal state can
be reached under S, i.e., S is safe according to Theorem 13.

2

5.3 Extract a Supervior from AIC-Safe

By Theorem 17, to synthesize a safe supervisor, it suffices
to “extract” a subsystem from A(G). Specifically, we want
to extract a subsystem that enables as many events as
possible at each instant. To this end, let q = (ı, (γa, γf )) ∈
2X × Γ be a state in the inclusive controller. We define
Feas(q) = (4){
σ ∈ Σ : x ∈ ı ∧ δ(x, σ)! ∧

[
(σ ∈ Σact ∧ σ ∈ γa) or

(σ = tick ∧ EG(x) ∩ γf =∅)

]}
as the set of events that are feasible under control decision
(γa, γf ) at state ı. Therefore, when comparing the permis-
siveness of two control decisions, we should not just com-
pare these sets directly since some enabled events may not
be feasible. Instead, we should compare the corresponding
set of feasible events under each control decision.



Based on the above discuss, we propose the following
approach for exacting a subsystem of A(G).

• Initially, we choose an initial state q0 ∈ Q0,A that
contains the maximum number of feasible events
among all initial states, i.e.,

∀q′0 ∈ Q0,A : |Feas(q′0)| ≤ |Feas(q0)|.
• At each state q reached, upon the occurrence of

observable event σ ∈ Σo, we choose a successor state
q′ ∈ hA(q, σ) that contains the maximum number of
feasible events among all successor states,

∀q′′ ∈ hA(q, σ) : |Feas(q′′)| ≤ |Feas(q′)|.
• We repeat the above procedure until all reachable

states are visited (either by a depth-first search or
a breath-first search) and denote by T ∗ ⊑ A(G) the
resulting inclusive controller.

Clearly, T ∗ includes a unique supervisor as the successor
state upon the occurrence of each event is unique, and
we denote by S∗ such a supervisor. Then the following
theorem shows that S∗ indeed solves Problem 1.
Theorem 18. S∗ solves Problem 1, i.e., S∗ is a maximally-
permissive safe supervisor.

Proof. By Theorem 17, S∗ is safe. Next, we show that S∗

is also maximally-permissive. We prove by contradiction:
suppose S∗ is not maximally-permissive, i.e., there exists
a safe supervisor S such that L(S∗/G) ⊂ L(S/G). This
implies that there exists a string s ∈ L(S/G) such that

• Feas(qP (s),S∗) ⊂ Feas(qP (s),S); and
• For any prefix α of P (s) such that α ̸= P (s), we have

Feas(qα,S) = Feas(qα,S∗).
If P (s) = ϵ, then the first condition implies that
|Feas(q0,S∗)| < |Feas(q0,S)|, which contradicts to the
fact that we choose an initial state with the maximum
number of feasible events. Similarly, if P (s) ̸= ϵ, then
the second condition implies that qα′,S = qα′,S∗ , where
α′ is the longest prefix of P (s) such that α′ ̸= P (s).
Let P (s) = α′σ. Then we know that {qP (s),S , qP (s),S∗} ⊆
hA(qα′,S , σ). However, again, the first condition implies a
contradiction since qP (s),S∗ is chosen such that it has the
maximum number of feasible events in hA(qα′,S∗ , σ), but
|Feas(qP (s),S∗)| < |Feas(qP (s),S)|. Therefore, S∗ has to
be maximally permissive. 2

We illustrate how to synthesize a safe and maximally-
permissive supervisor by the following example.
Example 19. Again, we consider our running example. To
extract a supervisor from A(G) in Figure 2, we apply the
method mentioned above and thus obtain T3 ⊑ A(G)
shown in Figure 3. Initially, for any q ∈ Q0, we have
|Feas(q)| = 1; thus we can choose ({0, 1, 2}, (Σuc ∪
{c}, {o})) as the initial state. Then after observing o, we
choose ({3, 4, 5}, (Σuc ∪ {c}, {o})) as the successor state.
Again, if o is observed, we can choose successor state
({3, 4, 6}, (Σuc, ∅)). This results in the inclusive controller
T ∗ shown in Figure 3. Let S∗ be the unique supervisor
included in T ∗. The closed-loop language under control
L(S∗/G) is shown in Figure 4.
Remark 2. Note that solution to Problem 1 is not unique
since for each set of successor states hA(q, σ), there may
have two different maximal control decisions such that

{0, 1, 2},({uc, c},{o}) {3, 4, 5},({uc, c},{o})

{3, 4, 6},({uc},{})

o o

o

Fig. 3. The IC T3 where the supervisor extracted by our
methods from A(G) was uniquely included in.

1
a

3 5 3’

2 4 6 4’

0
b o

o

o

o

o
tick

co

o

o

Fig. 4. Automaton that generates the closed-loop language
L(S∗/G).

|Feas(q)| = |Feas(q′)| but Feas(q) ̸= Feas(q′). Our
algorithm just randomly choose a successor state with
the maximum number of feasible events without any
additional criterion.
Remark 3. The complexity of the synthesis procedure
is exponential in the size of the system. Specifically,
the resulting IC T ∗, which is essentially the supervi-
sor realization, contains at most 2|X|+|Σact|+|Σfor| states
and |Σo|2|X|+|Σact|+|Σfor| transitions. However, it is well-
known that such an exponential complexity is unavoidable
for partially-observed synthesis problem Tsitsiklis (1989).

6. CONCLUSION

In this paper, we solved the problem of synthesizing
maximally-permissive safe supervisors for TDES under
partial observation. We considered a general setting where
the supervisor can choose the set of events to force. We
investigate how information evolves in the closed-loop sys-
tem in the timed setting. A new automaton containing pos-
sible safe control decisions called the AIC-safe was defined.
We showed how to synthesize a maximally-permissive safe
supervisor from the AIC-safe. Our results generalize previ-
ous synthesis techniques from the untimed setting to the
timed setting. In the future, we plan to investigate the
non-blocking control problem for TDES.
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